• Je něco špatně v tomto záznamu ?

Boundary heat diffusion classifier for a semi-supervised learning in a multilayer network embedding

M. Timilsina, V. Nováček, M. d'Aquin, H. Yang

. 2022 ; 156 (-) : 205-217. [pub] 20221013

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22032355

The scarcity of high-quality annotations in many application scenarios has recently led to an increasing interest in devising learning techniques that combine unlabeled data with labeled data in a network. In this work, we focus on the label propagation problem in multilayer networks. Our approach is inspired by the heat diffusion model, which shows usefulness in machine learning problems such as classification and dimensionality reduction. We propose a novel boundary-based heat diffusion algorithm that guarantees a closed-form solution with an efficient implementation. We experimentally validated our method on synthetic networks and five real-world multilayer network datasets representing scientific coauthorship, spreading drug adoption among physicians, two bibliographic networks, and a movie network. The results demonstrate the benefits of the proposed algorithm, where our boundary-based heat diffusion dominates the performance of the state-of-the-art methods.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22032355
003      
CZ-PrNML
005      
20230131151614.0
007      
ta
008      
230120s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neunet.2022.10.005 $2 doi
035    __
$a (PubMed)36274527
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Timilsina, Mohan $u Data Science Institute, Insight Centre for Data Analytics, University of Galway, Ireland. Electronic address: mohan.timilsina@insight-centre.org
245    10
$a Boundary heat diffusion classifier for a semi-supervised learning in a multilayer network embedding / $c M. Timilsina, V. Nováček, M. d'Aquin, H. Yang
520    9_
$a The scarcity of high-quality annotations in many application scenarios has recently led to an increasing interest in devising learning techniques that combine unlabeled data with labeled data in a network. In this work, we focus on the label propagation problem in multilayer networks. Our approach is inspired by the heat diffusion model, which shows usefulness in machine learning problems such as classification and dimensionality reduction. We propose a novel boundary-based heat diffusion algorithm that guarantees a closed-form solution with an efficient implementation. We experimentally validated our method on synthetic networks and five real-world multilayer network datasets representing scientific coauthorship, spreading drug adoption among physicians, two bibliographic networks, and a movie network. The results demonstrate the benefits of the proposed algorithm, where our boundary-based heat diffusion dominates the performance of the state-of-the-art methods.
650    12
$a vysoká teplota $7 D006358
650    12
$a řízené strojové učení $7 D000069553
650    _2
$a algoritmy $7 D000465
650    _2
$a strojové učení $7 D000069550
655    _2
$a časopisecké články $7 D016428
700    1_
$a Nováček, Vít $u Data Science Institute, Insight Centre for Data Analytics, University of Galway, Ireland; Faculty of Informatics, Masaryk University Brno, Czech Republic; Masaryk Memorial Cancer Institute, Brno, Czech Republic. Electronic address: vit.novacek@insight-centre.org
700    1_
$a d'Aquin, Mathieu $u Data Science Institute, Insight Centre for Data Analytics, University of Galway, Ireland. Electronic address: mathieu.daquin@insight-centre.org
700    1_
$a Yang, Haixuan $u School of Mathematical and Statistical Sciences, University of Galway, Ireland. Electronic address: haixuan.yang@nuigalway.ie
773    0_
$w MED00011811 $t Neural networks : the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 156, č. - (2022), s. 205-217
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36274527 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230120 $b ABA008
991    __
$a 20230131151610 $b ABA008
999    __
$a ok $b bmc $g 1891235 $s 1183690
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 156 $c - $d 205-217 $e 20221013 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
LZP    __
$a Pubmed-20230120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...