Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Structural and functional basis of mammalian microRNA biogenesis by Dicer

D. Zapletal, E. Taborska, J. Pasulka, R. Malik, K. Kubicek, M. Zanova, C. Much, M. Sebesta, V. Buccheri, F. Horvat, I. Jenickova, M. Prochazkova, J. Prochazka, M. Pinkas, J. Novacek, DF. Joseph, R. Sedlacek, C. Bernecky, D. O'Carroll, R. Stefl, P. Svoboda

. 2022 ; 82 (21) : 4064-4079.e13. [pub] 2022Nov03

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, komentáře

Perzistentní odkaz   https://www.medvik.cz/link/bmc22032737

E-zdroje NLK Online Plný text

Cell Press Free Archives od 1997-12-01 do Před 1 rokem
Free Medical Journals od 1997 do Před 1 rokem
Free Medical Journals od 1997 do Před 1 rokem
Open Access Digital Library od 1997-12-01
Elsevier Open Archive Journals od 1997-12-01 do Před 1 rokem

MicroRNA (miRNA) and RNA interference (RNAi) pathways rely on small RNAs produced by Dicer endonucleases. Mammalian Dicer primarily supports the essential gene-regulating miRNA pathway, but how it is specifically adapted to miRNA biogenesis is unknown. We show that the adaptation entails a unique structural role of Dicer's DExD/H helicase domain. Although mice tolerate loss of its putative ATPase function, the complete absence of the domain is lethal because it assures high-fidelity miRNA biogenesis. Structures of murine Dicer•-miRNA precursor complexes revealed that the DExD/H domain has a helicase-unrelated structural function. It locks Dicer in a closed state, which facilitates miRNA precursor selection. Transition to a cleavage-competent open state is stimulated by Dicer-binding protein TARBP2. Absence of the DExD/H domain or its mutations unlocks the closed state, reduces substrate selectivity, and activates RNAi. Thus, the DExD/H domain structurally contributes to mammalian miRNA biogenesis and underlies mechanistical partitioning of miRNA and RNAi pathways.

000      
00000naa a2200000 a 4500
001      
bmc22032737
003      
CZ-PrNML
005      
20230131150656.0
007      
ta
008      
230120s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.molcel.2022.10.010 $2 doi
035    __
$a (PubMed)36332606
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zapletal, David $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
245    10
$a Structural and functional basis of mammalian microRNA biogenesis by Dicer / $c D. Zapletal, E. Taborska, J. Pasulka, R. Malik, K. Kubicek, M. Zanova, C. Much, M. Sebesta, V. Buccheri, F. Horvat, I. Jenickova, M. Prochazkova, J. Prochazka, M. Pinkas, J. Novacek, DF. Joseph, R. Sedlacek, C. Bernecky, D. O'Carroll, R. Stefl, P. Svoboda
520    9_
$a MicroRNA (miRNA) and RNA interference (RNAi) pathways rely on small RNAs produced by Dicer endonucleases. Mammalian Dicer primarily supports the essential gene-regulating miRNA pathway, but how it is specifically adapted to miRNA biogenesis is unknown. We show that the adaptation entails a unique structural role of Dicer's DExD/H helicase domain. Although mice tolerate loss of its putative ATPase function, the complete absence of the domain is lethal because it assures high-fidelity miRNA biogenesis. Structures of murine Dicer•-miRNA precursor complexes revealed that the DExD/H domain has a helicase-unrelated structural function. It locks Dicer in a closed state, which facilitates miRNA precursor selection. Transition to a cleavage-competent open state is stimulated by Dicer-binding protein TARBP2. Absence of the DExD/H domain or its mutations unlocks the closed state, reduces substrate selectivity, and activates RNAi. Thus, the DExD/H domain structurally contributes to mammalian miRNA biogenesis and underlies mechanistical partitioning of miRNA and RNAi pathways.
650    _2
$a myši $7 D051379
650    _2
$a zvířata $7 D000818
650    12
$a ribonukleasa III $x metabolismus $7 D043244
650    _2
$a RNA interference $7 D034622
650    12
$a mikro RNA $x genetika $x metabolismus $7 D035683
650    _2
$a transportní proteiny $x metabolismus $7 D002352
650    _2
$a savci $x metabolismus $7 D008322
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a komentáře $7 D016420
700    1_
$a Taborska, Eliska $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
700    1_
$a Pasulka, Josef $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
700    1_
$a Malik, Radek $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
700    1_
$a Kubicek, Karel $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
700    1_
$a Zanova, Martina $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
700    1_
$a Much, Christian $u Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy
700    1_
$a Sebesta, Marek $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
700    1_
$a Buccheri, Valeria $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
700    1_
$a Horvat, Filip $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic; Bioinformatics Group, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
700    1_
$a Jenickova, Irena $u Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
700    1_
$a Prochazkova, Michaela $u Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
700    1_
$a Prochazka, Jan $u Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
700    1_
$a Pinkas, Matyas $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
700    1_
$a Novacek, Jiri $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
700    1_
$a Joseph, Diego F $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
700    1_
$a Sedlacek, Radislav $u Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
700    1_
$a Bernecky, Carrie $u Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
700    1_
$a O'Carroll, Dónal $u Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy; Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
700    1_
$a Stefl, Richard $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic. Electronic address: richard.stefl@ceitec.muni.cz
700    1_
$a Svoboda, Petr $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: svobodap@img.cas.cz
773    0_
$w MED00011398 $t Molecular cell $x 1097-4164 $g Roč. 82, č. 21 (2022), s. 4064-4079.e13
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36332606 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230120 $b ABA008
991    __
$a 20230131150652 $b ABA008
999    __
$a ok $b bmc $g 1891462 $s 1184072
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 82 $c 21 $d 4064-4079.e13 $e 2022Nov03 $i 1097-4164 $m Molecular cell $n Mol Cell $x MED00011398
LZP    __
$a Pubmed-20230120

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...