-
Something wrong with this record ?
Structural and functional basis of mammalian microRNA biogenesis by Dicer
D. Zapletal, E. Taborska, J. Pasulka, R. Malik, K. Kubicek, M. Zanova, C. Much, M. Sebesta, V. Buccheri, F. Horvat, I. Jenickova, M. Prochazkova, J. Prochazka, M. Pinkas, J. Novacek, DF. Joseph, R. Sedlacek, C. Bernecky, D. O'Carroll, R. Stefl, P. Svoboda
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't, Comment
NLK
Cell Press Free Archives
from 1997-12-01 to 1 year ago
Free Medical Journals
from 1997 to 1 year ago
Free Medical Journals
from 1997 to 1 year ago
Open Access Digital Library
from 1997-12-01
- MeSH
- MicroRNAs * genetics metabolism MeSH
- Mice MeSH
- Ribonuclease III * metabolism MeSH
- RNA Interference MeSH
- Mammals metabolism MeSH
- Carrier Proteins metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comment MeSH
- Research Support, Non-U.S. Gov't MeSH
MicroRNA (miRNA) and RNA interference (RNAi) pathways rely on small RNAs produced by Dicer endonucleases. Mammalian Dicer primarily supports the essential gene-regulating miRNA pathway, but how it is specifically adapted to miRNA biogenesis is unknown. We show that the adaptation entails a unique structural role of Dicer's DExD/H helicase domain. Although mice tolerate loss of its putative ATPase function, the complete absence of the domain is lethal because it assures high-fidelity miRNA biogenesis. Structures of murine Dicer•-miRNA precursor complexes revealed that the DExD/H domain has a helicase-unrelated structural function. It locks Dicer in a closed state, which facilitates miRNA precursor selection. Transition to a cleavage-competent open state is stimulated by Dicer-binding protein TARBP2. Absence of the DExD/H domain or its mutations unlocks the closed state, reduces substrate selectivity, and activates RNAi. Thus, the DExD/H domain structurally contributes to mammalian miRNA biogenesis and underlies mechanistical partitioning of miRNA and RNAi pathways.
CEITEC Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Institute of Science and Technology Austria Am Campus 1 3400 Klosterneuburg Austria
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22032737
- 003
- CZ-PrNML
- 005
- 20230131150656.0
- 007
- ta
- 008
- 230120s2022 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.molcel.2022.10.010 $2 doi
- 035 __
- $a (PubMed)36332606
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zapletal, David $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- 245 10
- $a Structural and functional basis of mammalian microRNA biogenesis by Dicer / $c D. Zapletal, E. Taborska, J. Pasulka, R. Malik, K. Kubicek, M. Zanova, C. Much, M. Sebesta, V. Buccheri, F. Horvat, I. Jenickova, M. Prochazkova, J. Prochazka, M. Pinkas, J. Novacek, DF. Joseph, R. Sedlacek, C. Bernecky, D. O'Carroll, R. Stefl, P. Svoboda
- 520 9_
- $a MicroRNA (miRNA) and RNA interference (RNAi) pathways rely on small RNAs produced by Dicer endonucleases. Mammalian Dicer primarily supports the essential gene-regulating miRNA pathway, but how it is specifically adapted to miRNA biogenesis is unknown. We show that the adaptation entails a unique structural role of Dicer's DExD/H helicase domain. Although mice tolerate loss of its putative ATPase function, the complete absence of the domain is lethal because it assures high-fidelity miRNA biogenesis. Structures of murine Dicer•-miRNA precursor complexes revealed that the DExD/H domain has a helicase-unrelated structural function. It locks Dicer in a closed state, which facilitates miRNA precursor selection. Transition to a cleavage-competent open state is stimulated by Dicer-binding protein TARBP2. Absence of the DExD/H domain or its mutations unlocks the closed state, reduces substrate selectivity, and activates RNAi. Thus, the DExD/H domain structurally contributes to mammalian miRNA biogenesis and underlies mechanistical partitioning of miRNA and RNAi pathways.
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a ribonukleasa III $x metabolismus $7 D043244
- 650 _2
- $a RNA interference $7 D034622
- 650 12
- $a mikro RNA $x genetika $x metabolismus $7 D035683
- 650 _2
- $a transportní proteiny $x metabolismus $7 D002352
- 650 _2
- $a savci $x metabolismus $7 D008322
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a komentáře $7 D016420
- 700 1_
- $a Taborska, Eliska $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- 700 1_
- $a Pasulka, Josef $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- 700 1_
- $a Malik, Radek $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- 700 1_
- $a Kubicek, Karel $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- 700 1_
- $a Zanova, Martina $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- 700 1_
- $a Much, Christian $u Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy
- 700 1_
- $a Sebesta, Marek $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- 700 1_
- $a Buccheri, Valeria $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- 700 1_
- $a Horvat, Filip $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic; Bioinformatics Group, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
- 700 1_
- $a Jenickova, Irena $u Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
- 700 1_
- $a Prochazkova, Michaela $u Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
- 700 1_
- $a Prochazka, Jan $u Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
- 700 1_
- $a Pinkas, Matyas $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- 700 1_
- $a Novacek, Jiri $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- 700 1_
- $a Joseph, Diego F $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- 700 1_
- $a Sedlacek, Radislav $u Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
- 700 1_
- $a Bernecky, Carrie $u Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
- 700 1_
- $a O'Carroll, Dónal $u Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy; Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- 700 1_
- $a Stefl, Richard $u CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic. Electronic address: richard.stefl@ceitec.muni.cz
- 700 1_
- $a Svoboda, Petr $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: svobodap@img.cas.cz
- 773 0_
- $w MED00011398 $t Molecular cell $x 1097-4164 $g Roč. 82, č. 21 (2022), s. 4064-4079.e13
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36332606 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230120 $b ABA008
- 991 __
- $a 20230131150652 $b ABA008
- 999 __
- $a ok $b bmc $g 1891462 $s 1184072
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2022 $b 82 $c 21 $d 4064-4079.e13 $e 2022Nov03 $i 1097-4164 $m Molecular cell $n Mol Cell $x MED00011398
- LZP __
- $a Pubmed-20230120