-
Je něco špatně v tomto záznamu ?
White matter brain structure predicts language performance and learning success
SM. Sánchez, H. Schmidt, G. Gallardo, A. Anwander, J. Brauer, AD. Friederici, TR. Knösche
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2020
PubMed Central
od 1998
ProQuest Central
od 2021-08-01
Medline Complete (EBSCOhost)
od 2012-07-01
Health & Medicine (ProQuest)
od 2021-08-01
Wiley-Blackwell Open Access Titles
od 1996
ROAD: Directory of Open Access Scholarly Resources
od 1993
PubMed
36399515
DOI
10.1002/hbm.26132
Knihovny.cz E-zdroje
- MeSH
- bílá hmota * diagnostické zobrazování MeSH
- jazyk (prostředek komunikace) MeSH
- lidé MeSH
- mozek diagnostické zobrazování MeSH
- učení MeSH
- zobrazování difuzních tenzorů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Individual differences in the ability to process language have long been discussed. Much of the neural basis of these, however, is yet unknown. Here we investigated the relationship between long-range white matter connectivity of the brain, as revealed by diffusion tractography, and the ability to process syntactically complex sentences in the participants' native language as well as the improvement thereof by multiday training. We identified specific network motifs by singular value decomposition that indeed related white matter structural connectivity to individual language processing performance. First, for two such motifs, one in the left and one in the right hemisphere, their individual prevalence significantly predicted the individual language performance, suggesting an anatomical predisposition for the individual ability to process syntactically complex sentences. Both motifs comprise a number of cortical regions, but seem to be dominated by areas known for the involvement in working memory rather than the classical language network itself. Second, we identified another left hemispheric network motif, whose change of prevalence over the training period significantly correlated with the individual change in performance, thus reflecting training induced white matter plasticity. This motif comprises diverse cortical areas including regions known for their involvement in language processing, working memory and motor functions. The present findings suggest that individual differences in language processing and learning can be explained, in part, by individual differences in the brain's white matter structure. Brain structure may be a crucial factor to be considered when discussing variations in human cognitive performance, more generally.
Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
Friedrich Schiller University Office of the Vice President for Young Researchers Jena Germany
Institute of Biomedical Engineering and Informatics TU Ilmenau Ilmenau Germany
Institute of Computer Science Czech Academy of Sciences Prague Czech Republic
Laureate Institute for Brain Research Tulsa Oklahoma USA
Max Planck Institute for Human Cognitive and Brain Sciences Brain Networks Group Leipzig Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23004038
- 003
- CZ-PrNML
- 005
- 20230425141042.0
- 007
- ta
- 008
- 230418s2023 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/hbm.26132 $2 doi
- 035 __
- $a (PubMed)36399515
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Sánchez, Stella M $u Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina $u Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany $u Laureate Institute for Brain Research, Tulsa, Oklahoma, USA $1 https://orcid.org/0000000295375694
- 245 10
- $a White matter brain structure predicts language performance and learning success / $c SM. Sánchez, H. Schmidt, G. Gallardo, A. Anwander, J. Brauer, AD. Friederici, TR. Knösche
- 520 9_
- $a Individual differences in the ability to process language have long been discussed. Much of the neural basis of these, however, is yet unknown. Here we investigated the relationship between long-range white matter connectivity of the brain, as revealed by diffusion tractography, and the ability to process syntactically complex sentences in the participants' native language as well as the improvement thereof by multiday training. We identified specific network motifs by singular value decomposition that indeed related white matter structural connectivity to individual language processing performance. First, for two such motifs, one in the left and one in the right hemisphere, their individual prevalence significantly predicted the individual language performance, suggesting an anatomical predisposition for the individual ability to process syntactically complex sentences. Both motifs comprise a number of cortical regions, but seem to be dominated by areas known for the involvement in working memory rather than the classical language network itself. Second, we identified another left hemispheric network motif, whose change of prevalence over the training period significantly correlated with the individual change in performance, thus reflecting training induced white matter plasticity. This motif comprises diverse cortical areas including regions known for their involvement in language processing, working memory and motor functions. The present findings suggest that individual differences in language processing and learning can be explained, in part, by individual differences in the brain's white matter structure. Brain structure may be a crucial factor to be considered when discussing variations in human cognitive performance, more generally.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a bílá hmota $x diagnostické zobrazování $7 D066127
- 650 _2
- $a mozek $x diagnostické zobrazování $7 D001921
- 650 _2
- $a učení $7 D007858
- 650 _2
- $a jazyk (prostředek komunikace) $7 D007802
- 650 _2
- $a zobrazování difuzních tenzorů $7 D056324
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Schmidt, Helmut $u Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany $u Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Gallardo, Guillermo $u Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- 700 1_
- $a Anwander, Alfred $u Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- 700 1_
- $a Brauer, Jens $u Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany $u Friedrich Schiller University, Office of the Vice-President for Young Researchers, Jena, Germany
- 700 1_
- $a Friederici, Angela D $u Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- 700 1_
- $a Knösche, Thomas R $u Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany $u Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
- 773 0_
- $w MED00002066 $t Human brain mapping $x 1097-0193 $g Roč. 44, č. 4 (2023), s. 1445-1455
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36399515 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230418 $b ABA008
- 991 __
- $a 20230425141039 $b ABA008
- 999 __
- $a ok $b bmc $g 1924600 $s 1190247
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 44 $c 4 $d 1445-1455 $e 20221118 $i 1097-0193 $m Human brain mapping $n Hum Brain Mapp $x MED00002066
- LZP __
- $a Pubmed-20230418