Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The first solid-state route to luminescent Au(I)-glutathionate and its pH-controlled transformation into ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters for application in cancer radiotheraphy

A. Deák, PT. Szabó, V. Bednaříková, J. Cihlář, A. Demeter, M. Remešová, E. Colacino, L. Čelko

. 2023 ; 11 (-) : 1178225. [pub] 20230605

Status neindexováno Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc23009594

There is still a need for synthetic approaches that are much faster, easier to scale up, more robust and efficient for generating gold(I)-thiolates that can be easily converted into gold-thiolate nanoclusters. Mechanochemical methods can offer significantly reduced reaction times, increased yields and straightforward recovery of the product, compared to the solution-based reactions. For the first time, a new simple, rapid and efficient mechanochemical redox method in a ball-mill was developed to produce the highly luminescent, pH-responsive Au(I)-glutathionate, [Au(SG)]n. The efficient productivity of the mechanochemical redox reaction afforded orange luminescent [Au(SG)]n in isolable amounts (mg scale), usually not achieved by more conventional methods in solution. Then, ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters were prepared by pH-triggered dissociation of [Au(SG)]n. The pH-stimulated dissociation of the Au(I)-glutathionate complex provides a time-efficient synthesis of oligomeric Au10-12(SG)10-12 nanoclusters, it avoids high-temperature heating or the addition of harmful reducing agent (e.g., carbon monoxide). Therefore, we present herein a new and eco-friendly methodology to access oligomeric glutathione-based gold nanoclusters, already finding applications in biomedical field as efficient radiosensitizers in cancer radiotherapy.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23009594
003      
CZ-PrNML
005      
20230721095532.0
007      
ta
008      
230707s2023 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3389/fchem.2023.1178225 $2 doi
035    __
$a (PubMed)37342159
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Deák, Andrea $u Supramolecular Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
245    14
$a The first solid-state route to luminescent Au(I)-glutathionate and its pH-controlled transformation into ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters for application in cancer radiotheraphy / $c A. Deák, PT. Szabó, V. Bednaříková, J. Cihlář, A. Demeter, M. Remešová, E. Colacino, L. Čelko
520    9_
$a There is still a need for synthetic approaches that are much faster, easier to scale up, more robust and efficient for generating gold(I)-thiolates that can be easily converted into gold-thiolate nanoclusters. Mechanochemical methods can offer significantly reduced reaction times, increased yields and straightforward recovery of the product, compared to the solution-based reactions. For the first time, a new simple, rapid and efficient mechanochemical redox method in a ball-mill was developed to produce the highly luminescent, pH-responsive Au(I)-glutathionate, [Au(SG)]n. The efficient productivity of the mechanochemical redox reaction afforded orange luminescent [Au(SG)]n in isolable amounts (mg scale), usually not achieved by more conventional methods in solution. Then, ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters were prepared by pH-triggered dissociation of [Au(SG)]n. The pH-stimulated dissociation of the Au(I)-glutathionate complex provides a time-efficient synthesis of oligomeric Au10-12(SG)10-12 nanoclusters, it avoids high-temperature heating or the addition of harmful reducing agent (e.g., carbon monoxide). Therefore, we present herein a new and eco-friendly methodology to access oligomeric glutathione-based gold nanoclusters, already finding applications in biomedical field as efficient radiosensitizers in cancer radiotherapy.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Szabó, Pál T $u Centre for Structure Study, Research Centre for Natural Sciences, Budapest, Hungary
700    1_
$a Bednaříková, Vendula $u High-Performance Materials and Coatings for Industry Research Group, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
700    1_
$a Cihlář, Jaroslav $u High-Performance Materials and Coatings for Industry Research Group, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
700    1_
$a Demeter, Attila $u Renewable Energy Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
700    1_
$a Remešová, Michaela $u High-Performance Materials and Coatings for Industry Research Group, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
700    1_
$a Colacino, Evelina $u ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
700    1_
$a Čelko, Ladislav $u High-Performance Materials and Coatings for Industry Research Group, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
773    0_
$w MED00208456 $t Frontiers in chemistry $x 2296-2646 $g Roč. 11, č. - (2023), s. 1178225
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37342159 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230707 $b ABA008
991    __
$a 20230721095525 $b ABA008
999    __
$a ok $b bmc $g 1958424 $s 1195858
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2023 $b 11 $c - $d 1178225 $e 20230605 $i 2296-2646 $m Frontiers in chemistry $n Front Chem $x MED00208456
LZP    __
$a Pubmed-20230707

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...