-
Something wrong with this record ?
Transcriptomic analysis of Chinese yam (Dioscorea polystachya Turcz.) variants indicates brassinosteroid involvement in tuber development
J. Riekötter, J. Oklestkova, J. Muth, RM. Twyman, J. Epping
Status not-indexed Language English Country Switzerland
Document type Journal Article
NLK
Directory of Open Access Journals
from 2014
Free Medical Journals
from 2014
PubMed Central
from 2014
Europe PubMed Central
from 2014
Open Access Digital Library
from 2014-01-01
Open Access Digital Library
from 2014-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2014
- Publication type
- Journal Article MeSH
Dioscorea is an important but underutilized genus of flowering plants that grows predominantly in tropical and subtropical regions. Several species, known as yam, develop large underground tubers and aerial bulbils that are used as food. The Chinese yam (D. polystachya Turcz.) is one of the few Dioscorea species that grows well in temperate regions and has been proposed as a climate-resilient crop to enhance food security in Europe. However, the fragile, club-like tubers are unsuitable for mechanical harvesting, which is facilitated by shorter and thicker storage organs. Brassinosteroids (BRs) play a key role in plant cell division, cell elongation and proliferation, as well as in the gravitropic response. We collected RNA-Seq data from the head, middle and tip of two tuber shape variants: F60 (long, thin) and F2000 (short, thick). Comparative transcriptome analysis of F60 vs. F2000 revealed 30,229 differentially expressed genes (DEGs), 1,393 of which were differentially expressed in the growing tip. Several DEGs are involved in steroid/BR biosynthesis or signaling, or may be regulated by BRs. The quantification of endogenous BRs revealed higher levels of castasterone (CS), 28-norCS, 28-homoCS and brassinolide in F2000 compared to F60 tubers. The highest BR levels were detected in the growing tip, and CS was the most abundant (439.6 ± 196.41 pmol/g in F2000 and 365.6 ± 112.78 pmol/g in F60). Exogenous 24-epi-brassinolide (epi-BL) treatment (20 nM) in an aeroponic system significantly increased the width-to-length ratio (0.045 ± 0.002) compared to the mock-treated plants (0.03 ± 0.002) after 7 weeks, indicating that exogenous epi-BL produces shorter and thicker tubers. In this study we demonstrate the role of BRs in D. polystachya tuber shape, providing insight into the role of plant hormones in yam storage organ development. We found that BRs can influence tuber shape in Chinese yam by regulating the expression of genes involved cell expansion. Our data can help to improve the efficiency of Chinese yam cultivation, which could provide an alternative food source and thus contribute to future food security in Europe.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23009822
- 003
- CZ-PrNML
- 005
- 20230721095440.0
- 007
- ta
- 008
- 230707s2023 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3389/fnut.2023.1112793 $2 doi
- 035 __
- $a (PubMed)37215221
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Riekötter, Jenny $u Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- 245 10
- $a Transcriptomic analysis of Chinese yam (Dioscorea polystachya Turcz.) variants indicates brassinosteroid involvement in tuber development / $c J. Riekötter, J. Oklestkova, J. Muth, RM. Twyman, J. Epping
- 520 9_
- $a Dioscorea is an important but underutilized genus of flowering plants that grows predominantly in tropical and subtropical regions. Several species, known as yam, develop large underground tubers and aerial bulbils that are used as food. The Chinese yam (D. polystachya Turcz.) is one of the few Dioscorea species that grows well in temperate regions and has been proposed as a climate-resilient crop to enhance food security in Europe. However, the fragile, club-like tubers are unsuitable for mechanical harvesting, which is facilitated by shorter and thicker storage organs. Brassinosteroids (BRs) play a key role in plant cell division, cell elongation and proliferation, as well as in the gravitropic response. We collected RNA-Seq data from the head, middle and tip of two tuber shape variants: F60 (long, thin) and F2000 (short, thick). Comparative transcriptome analysis of F60 vs. F2000 revealed 30,229 differentially expressed genes (DEGs), 1,393 of which were differentially expressed in the growing tip. Several DEGs are involved in steroid/BR biosynthesis or signaling, or may be regulated by BRs. The quantification of endogenous BRs revealed higher levels of castasterone (CS), 28-norCS, 28-homoCS and brassinolide in F2000 compared to F60 tubers. The highest BR levels were detected in the growing tip, and CS was the most abundant (439.6 ± 196.41 pmol/g in F2000 and 365.6 ± 112.78 pmol/g in F60). Exogenous 24-epi-brassinolide (epi-BL) treatment (20 nM) in an aeroponic system significantly increased the width-to-length ratio (0.045 ± 0.002) compared to the mock-treated plants (0.03 ± 0.002) after 7 weeks, indicating that exogenous epi-BL produces shorter and thicker tubers. In this study we demonstrate the role of BRs in D. polystachya tuber shape, providing insight into the role of plant hormones in yam storage organ development. We found that BRs can influence tuber shape in Chinese yam by regulating the expression of genes involved cell expansion. Our data can help to improve the efficiency of Chinese yam cultivation, which could provide an alternative food source and thus contribute to future food security in Europe.
- 590 __
- $a NEINDEXOVÁNO
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Oklestkova, Jana $u Laboratory of Growth Regulators, The Czech Academy of Science, Institute of Experimental Botany and Palacký University, Faculty of Science, Olomouc, Czechia
- 700 1_
- $a Muth, Jost $u Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- 700 1_
- $a Twyman, Richard M $u TRM Ltd., Scarborough, United Kingdom
- 700 1_
- $a Epping, Janina $u Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- 773 0_
- $w MED00200569 $t Frontiers in nutrition $x 2296-861X $g Roč. 10, č. - (2023), s. 1112793
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37215221 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230707 $b ABA008
- 991 __
- $a 20230721095433 $b ABA008
- 999 __
- $a ok $b bmc $g 1958516 $s 1196086
- BAS __
- $a 3
- BAS __
- $a PreBMC-PubMed-not-MEDLINE
- BMC __
- $a 2023 $b 10 $c - $d 1112793 $e 20230505 $i 2296-861X $m Frontiers in nutrition $n Front Nutr $x MED00200569
- LZP __
- $a Pubmed-20230707