Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs

T. Voitsitskyi, R. Stratiichuk, I. Koleiev, L. Popryho, Z. Ostrovsky, P. Henitsoi, I. Khropachov, V. Vozniak, R. Zhytar, D. Nechepurenko, S. Yesylevskyy, A. Nafiiev, S. Starosyla

. 2023 ; 13 (15) : 10261-10272. [pub] 20230331

Status neindexováno Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc23010083

Accurate prediction of the drug-target affinity (DTA) in silico is of critical importance for modern drug discovery. Computational methods of DTA prediction, applied in the early stages of drug development, are able to speed it up and cut its cost significantly. A wide range of approaches based on machine learning were recently proposed for DTA assessment. The most promising of them are based on deep learning techniques and graph neural networks to encode molecular structures. The recent breakthrough in protein structure prediction made by AlphaFold made an unprecedented amount of proteins without experimentally defined structures accessible for computational DTA prediction. In this work, we propose a new deep learning DTA model 3DProtDTA, which utilises AlphaFold structure predictions in conjunction with the graph representation of proteins. The model is superior to its rivals on common benchmarking datasets and has potential for further improvement.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23010083
003      
CZ-PrNML
005      
20230721095330.0
007      
ta
008      
230707s2023 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1039/d3ra00281k $2 doi
035    __
$a (PubMed)37006369
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Voitsitskyi, Taras $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com $u Department of Physics of Biological Systems, Institute of Physics of The National Academy of Sciences of Ukraine Nauky Ave. 46 03038 Kyiv Ukraine $1 https://orcid.org/0000000331273688
245    10
$a 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs / $c T. Voitsitskyi, R. Stratiichuk, I. Koleiev, L. Popryho, Z. Ostrovsky, P. Henitsoi, I. Khropachov, V. Vozniak, R. Zhytar, D. Nechepurenko, S. Yesylevskyy, A. Nafiiev, S. Starosyla
520    9_
$a Accurate prediction of the drug-target affinity (DTA) in silico is of critical importance for modern drug discovery. Computational methods of DTA prediction, applied in the early stages of drug development, are able to speed it up and cut its cost significantly. A wide range of approaches based on machine learning were recently proposed for DTA assessment. The most promising of them are based on deep learning techniques and graph neural networks to encode molecular structures. The recent breakthrough in protein structure prediction made by AlphaFold made an unprecedented amount of proteins without experimentally defined structures accessible for computational DTA prediction. In this work, we propose a new deep learning DTA model 3DProtDTA, which utilises AlphaFold structure predictions in conjunction with the graph representation of proteins. The model is superior to its rivals on common benchmarking datasets and has potential for further improvement.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Stratiichuk, Roman $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com $u Department of Biophysics and Medical Informatics, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv 64 Volodymyrska Str. 01601 Kyiv Ukraine
700    1_
$a Koleiev, Ihor $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
700    1_
$a Popryho, Leonid $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
700    1_
$a Ostrovsky, Zakhar $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
700    1_
$a Henitsoi, Pavlo $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
700    1_
$a Khropachov, Ivan $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
700    1_
$a Vozniak, Volodymyr $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
700    1_
$a Zhytar, Roman $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
700    1_
$a Nechepurenko, Diana $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
700    1_
$a Yesylevskyy, Semen $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences CZ-166 10 Prague 6 Czech Republic $u Department of Physics of Biological Systems, Institute of Physics of The National Academy of Sciences of Ukraine Nauky Ave. 46 03038 Kyiv Ukraine $1 https://orcid.org/0000000267488931
700    1_
$a Nafiiev, Alan $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
700    1_
$a Starosyla, Serhii $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com $1 https://orcid.org/0000000251030635
773    0_
$w MED00193481 $t RSC advances $x 2046-2069 $g Roč. 13, č. 15 (2023), s. 10261-10272
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37006369 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230707 $b ABA008
991    __
$a 20230721095323 $b ABA008
999    __
$a ok $b bmc $g 1958627 $s 1196347
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2023 $b 13 $c 15 $d 10261-10272 $e 20230331 $i 2046-2069 $m RSC advances $n RSC Adv $x MED00193481
LZP    __
$a Pubmed-20230707

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...