-
Je něco špatně v tomto záznamu ?
3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs
T. Voitsitskyi, R. Stratiichuk, I. Koleiev, L. Popryho, Z. Ostrovsky, P. Henitsoi, I. Khropachov, V. Vozniak, R. Zhytar, D. Nechepurenko, S. Yesylevskyy, A. Nafiiev, S. Starosyla
Status neindexováno Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2017
PubMed Central
od 2018
ROAD: Directory of Open Access Scholarly Resources
od 2011
PubMed
37006369
DOI
10.1039/d3ra00281k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Accurate prediction of the drug-target affinity (DTA) in silico is of critical importance for modern drug discovery. Computational methods of DTA prediction, applied in the early stages of drug development, are able to speed it up and cut its cost significantly. A wide range of approaches based on machine learning were recently proposed for DTA assessment. The most promising of them are based on deep learning techniques and graph neural networks to encode molecular structures. The recent breakthrough in protein structure prediction made by AlphaFold made an unprecedented amount of proteins without experimentally defined structures accessible for computational DTA prediction. In this work, we propose a new deep learning DTA model 3DProtDTA, which utilises AlphaFold structure predictions in conjunction with the graph representation of proteins. The model is superior to its rivals on common benchmarking datasets and has potential for further improvement.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23010083
- 003
- CZ-PrNML
- 005
- 20230721095330.0
- 007
- ta
- 008
- 230707s2023 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1039/d3ra00281k $2 doi
- 035 __
- $a (PubMed)37006369
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Voitsitskyi, Taras $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com $u Department of Physics of Biological Systems, Institute of Physics of The National Academy of Sciences of Ukraine Nauky Ave. 46 03038 Kyiv Ukraine $1 https://orcid.org/0000000331273688
- 245 10
- $a 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs / $c T. Voitsitskyi, R. Stratiichuk, I. Koleiev, L. Popryho, Z. Ostrovsky, P. Henitsoi, I. Khropachov, V. Vozniak, R. Zhytar, D. Nechepurenko, S. Yesylevskyy, A. Nafiiev, S. Starosyla
- 520 9_
- $a Accurate prediction of the drug-target affinity (DTA) in silico is of critical importance for modern drug discovery. Computational methods of DTA prediction, applied in the early stages of drug development, are able to speed it up and cut its cost significantly. A wide range of approaches based on machine learning were recently proposed for DTA assessment. The most promising of them are based on deep learning techniques and graph neural networks to encode molecular structures. The recent breakthrough in protein structure prediction made by AlphaFold made an unprecedented amount of proteins without experimentally defined structures accessible for computational DTA prediction. In this work, we propose a new deep learning DTA model 3DProtDTA, which utilises AlphaFold structure predictions in conjunction with the graph representation of proteins. The model is superior to its rivals on common benchmarking datasets and has potential for further improvement.
- 590 __
- $a NEINDEXOVÁNO
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Stratiichuk, Roman $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com $u Department of Biophysics and Medical Informatics, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv 64 Volodymyrska Str. 01601 Kyiv Ukraine
- 700 1_
- $a Koleiev, Ihor $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
- 700 1_
- $a Popryho, Leonid $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
- 700 1_
- $a Ostrovsky, Zakhar $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
- 700 1_
- $a Henitsoi, Pavlo $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
- 700 1_
- $a Khropachov, Ivan $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
- 700 1_
- $a Vozniak, Volodymyr $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
- 700 1_
- $a Zhytar, Roman $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
- 700 1_
- $a Nechepurenko, Diana $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
- 700 1_
- $a Yesylevskyy, Semen $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences CZ-166 10 Prague 6 Czech Republic $u Department of Physics of Biological Systems, Institute of Physics of The National Academy of Sciences of Ukraine Nauky Ave. 46 03038 Kyiv Ukraine $1 https://orcid.org/0000000267488931
- 700 1_
- $a Nafiiev, Alan $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com
- 700 1_
- $a Starosyla, Serhii $u Receptor.AI Inc. 20-22 Wenlock Road London N1 7GU UK taras270698@gmail.com $1 https://orcid.org/0000000251030635
- 773 0_
- $w MED00193481 $t RSC advances $x 2046-2069 $g Roč. 13, č. 15 (2023), s. 10261-10272
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37006369 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230707 $b ABA008
- 991 __
- $a 20230721095323 $b ABA008
- 999 __
- $a ok $b bmc $g 1958627 $s 1196347
- BAS __
- $a 3
- BAS __
- $a PreBMC-PubMed-not-MEDLINE
- BMC __
- $a 2023 $b 13 $c 15 $d 10261-10272 $e 20230331 $i 2046-2069 $m RSC advances $n RSC Adv $x MED00193481
- LZP __
- $a Pubmed-20230707