Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Evolution of the theoretical description of the isoelectric focusing experiment: III. Carrier ampholyte behavior in transient, bidirectional isotachophoresis

G. Vigh, B. Gaš

. 2023 ; 44 (7-8) : 689-700. [pub] 20230118

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23010582

In modern isoelectric focusing (IEF) systems, where (i) convective mixing is prevented by gels or small cross-sectional area separation channels, (ii) current densities vary spatially due to the presence of electrode vessels with much larger cross-sectional areas than those of the gels or separation channels, and (iii) electrophoretic and diffusive fluxes do not balance each other, stationary, steady-state pH gradients cannot form (open-system IEF). Open-system IEF is currently described as a two-stage process: A rapid IEF process forms the pH gradient from the carrier ampholytes (CAs) in the first stage, then isotachophoretic processes degrade the pH gradient in the second stage as the extreme pI CAs are moved into the electrode vessels where they become diluted. Based on the ratios of the local effective mobilities and the local conductivities ( μLeff(x)$\mu _{\rm{L}}^{{\rm{eff}}}( x )$ / κ(x)$\kappa ( x )$ values) of the anolyte, catholyte, and the CAs, we pointed out in the preceding paper (Vigh G, Gas B, Electrophoresis 2023, 44, 675-88) that in open-system IEF, a single process, transient, bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on. In this paper, we demonstrate some of the operational features of the tbdITP model using the new ITP/IEF version of Simul 6.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23010582
003      
CZ-PrNML
005      
20230801132519.0
007      
ta
008      
230718s2023 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/elps.202200239 $2 doi
035    __
$a (PubMed)36593722
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Vigh, Gyula $u Chemistry Department, Texas A&M University, College Station, Texas, USA
245    10
$a Evolution of the theoretical description of the isoelectric focusing experiment: III. Carrier ampholyte behavior in transient, bidirectional isotachophoresis / $c G. Vigh, B. Gaš
520    9_
$a In modern isoelectric focusing (IEF) systems, where (i) convective mixing is prevented by gels or small cross-sectional area separation channels, (ii) current densities vary spatially due to the presence of electrode vessels with much larger cross-sectional areas than those of the gels or separation channels, and (iii) electrophoretic and diffusive fluxes do not balance each other, stationary, steady-state pH gradients cannot form (open-system IEF). Open-system IEF is currently described as a two-stage process: A rapid IEF process forms the pH gradient from the carrier ampholytes (CAs) in the first stage, then isotachophoretic processes degrade the pH gradient in the second stage as the extreme pI CAs are moved into the electrode vessels where they become diluted. Based on the ratios of the local effective mobilities and the local conductivities ( μLeff(x)$\mu _{\rm{L}}^{{\rm{eff}}}( x )$ / κ(x)$\kappa ( x )$ values) of the anolyte, catholyte, and the CAs, we pointed out in the preceding paper (Vigh G, Gas B, Electrophoresis 2023, 44, 675-88) that in open-system IEF, a single process, transient, bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on. In this paper, we demonstrate some of the operational features of the tbdITP model using the new ITP/IEF version of Simul 6.
650    12
$a amfolytové směsi $7 D000665
650    12
$a izotachoforéza $7 D057625
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    _2
$a isoelektrická fokusace $x metody $7 D007525
650    _2
$a gely $7 D005782
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Gaš, Bohuslav $u Faculty of Science, Charles University, Prague, Czech Republic $1 https://orcid.org/0000000174250721 $7 mzk2017942003
773    0_
$w MED00001508 $t Electrophoresis $x 1522-2683 $g Roč. 44, č. 7-8 (2023), s. 689-700
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36593722 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230718 $b ABA008
991    __
$a 20230801132516 $b ABA008
999    __
$a ok $b bmc $g 1963172 $s 1196847
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 44 $c 7-8 $d 689-700 $e 20230118 $i 1522-2683 $m Electrophoresis $n Electrophoresis $x MED00001508
LZP    __
$a Pubmed-20230718

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...