-
Je něco špatně v tomto záznamu ?
Evolution of the theoretical description of the isoelectric focusing experiment: III. Carrier ampholyte behavior in transient, bidirectional isotachophoresis
G. Vigh, B. Gaš
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36593722
DOI
10.1002/elps.202200239
Knihovny.cz E-zdroje
- MeSH
- amfolytové směsi * MeSH
- gely MeSH
- isoelektrická fokusace metody MeSH
- izotachoforéza * MeSH
- koncentrace vodíkových iontů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In modern isoelectric focusing (IEF) systems, where (i) convective mixing is prevented by gels or small cross-sectional area separation channels, (ii) current densities vary spatially due to the presence of electrode vessels with much larger cross-sectional areas than those of the gels or separation channels, and (iii) electrophoretic and diffusive fluxes do not balance each other, stationary, steady-state pH gradients cannot form (open-system IEF). Open-system IEF is currently described as a two-stage process: A rapid IEF process forms the pH gradient from the carrier ampholytes (CAs) in the first stage, then isotachophoretic processes degrade the pH gradient in the second stage as the extreme pI CAs are moved into the electrode vessels where they become diluted. Based on the ratios of the local effective mobilities and the local conductivities ( μLeff(x)$\mu _{\rm{L}}^{{\rm{eff}}}( x )$ / κ(x)$\kappa ( x )$ values) of the anolyte, catholyte, and the CAs, we pointed out in the preceding paper (Vigh G, Gas B, Electrophoresis 2023, 44, 675-88) that in open-system IEF, a single process, transient, bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on. In this paper, we demonstrate some of the operational features of the tbdITP model using the new ITP/IEF version of Simul 6.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23010582
- 003
- CZ-PrNML
- 005
- 20230801132519.0
- 007
- ta
- 008
- 230718s2023 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/elps.202200239 $2 doi
- 035 __
- $a (PubMed)36593722
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Vigh, Gyula $u Chemistry Department, Texas A&M University, College Station, Texas, USA
- 245 10
- $a Evolution of the theoretical description of the isoelectric focusing experiment: III. Carrier ampholyte behavior in transient, bidirectional isotachophoresis / $c G. Vigh, B. Gaš
- 520 9_
- $a In modern isoelectric focusing (IEF) systems, where (i) convective mixing is prevented by gels or small cross-sectional area separation channels, (ii) current densities vary spatially due to the presence of electrode vessels with much larger cross-sectional areas than those of the gels or separation channels, and (iii) electrophoretic and diffusive fluxes do not balance each other, stationary, steady-state pH gradients cannot form (open-system IEF). Open-system IEF is currently described as a two-stage process: A rapid IEF process forms the pH gradient from the carrier ampholytes (CAs) in the first stage, then isotachophoretic processes degrade the pH gradient in the second stage as the extreme pI CAs are moved into the electrode vessels where they become diluted. Based on the ratios of the local effective mobilities and the local conductivities ( μLeff(x)$\mu _{\rm{L}}^{{\rm{eff}}}( x )$ / κ(x)$\kappa ( x )$ values) of the anolyte, catholyte, and the CAs, we pointed out in the preceding paper (Vigh G, Gas B, Electrophoresis 2023, 44, 675-88) that in open-system IEF, a single process, transient, bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on. In this paper, we demonstrate some of the operational features of the tbdITP model using the new ITP/IEF version of Simul 6.
- 650 12
- $a amfolytové směsi $7 D000665
- 650 12
- $a izotachoforéza $7 D057625
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a isoelektrická fokusace $x metody $7 D007525
- 650 _2
- $a gely $7 D005782
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Gaš, Bohuslav $u Faculty of Science, Charles University, Prague, Czech Republic $1 https://orcid.org/0000000174250721 $7 mzk2017942003
- 773 0_
- $w MED00001508 $t Electrophoresis $x 1522-2683 $g Roč. 44, č. 7-8 (2023), s. 689-700
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36593722 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230718 $b ABA008
- 991 __
- $a 20230801132516 $b ABA008
- 999 __
- $a ok $b bmc $g 1963172 $s 1196847
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 44 $c 7-8 $d 689-700 $e 20230118 $i 1522-2683 $m Electrophoresis $n Electrophoresis $x MED00001508
- LZP __
- $a Pubmed-20230718