• Je něco špatně v tomto záznamu ?

Classification of health deterioration by geometric invariants

D. Cimr, D. Busovsky, H. Fujita, F. Studnicka, R. Cimler, T. Hayashi

. 2023 ; 239 (-) : 107623. [pub] 20230526

Jazyk angličtina Země Irsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc23010792

BACKGROUND AND OBJECTIVES: Prediction of patient deterioration is essential in medical care, and its automation may reduce the risk of patient death. The precise monitoring of a patient's medical state requires devices placed on the body, which may cause discomfort. Our approach is based on the processing of long-term ballistocardiography data, which were measured using a sensory pad placed under the patient's mattress. METHODS: The investigated dataset was obtained via long-term measurements in retirement homes and intensive care units (ICU). Data were measured unobtrusively using a measuring pad equipped with piezoceramic sensors. The proposed approach focused on the processing methods of the measured ballistocardiographic signals, Cartan curvature (CC), and Euclidean arc length (EAL). RESULTS: For analysis, 218,979 normal and 216,259 aberrant 2-second samples were collected and classified using a convolutional neural network. Experiments using cross-validation with expert threshold and data length revealed the accuracy, sensitivity, and specificity of the proposed method to be 86.51 CONCLUSIONS: The proposed method provides a unique approach for an early detection of health concerns in an unobtrusive manner. In addition, the suitability of EAL over the CC was determined.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23010792
003      
CZ-PrNML
005      
20230801132628.0
007      
ta
008      
230718s2023 ie f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cmpb.2023.107623 $2 doi
035    __
$a (PubMed)37276760
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ie
100    1_
$a Cimr, Dalibor $u Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
245    10
$a Classification of health deterioration by geometric invariants / $c D. Cimr, D. Busovsky, H. Fujita, F. Studnicka, R. Cimler, T. Hayashi
520    9_
$a BACKGROUND AND OBJECTIVES: Prediction of patient deterioration is essential in medical care, and its automation may reduce the risk of patient death. The precise monitoring of a patient's medical state requires devices placed on the body, which may cause discomfort. Our approach is based on the processing of long-term ballistocardiography data, which were measured using a sensory pad placed under the patient's mattress. METHODS: The investigated dataset was obtained via long-term measurements in retirement homes and intensive care units (ICU). Data were measured unobtrusively using a measuring pad equipped with piezoceramic sensors. The proposed approach focused on the processing methods of the measured ballistocardiographic signals, Cartan curvature (CC), and Euclidean arc length (EAL). RESULTS: For analysis, 218,979 normal and 216,259 aberrant 2-second samples were collected and classified using a convolutional neural network. Experiments using cross-validation with expert threshold and data length revealed the accuracy, sensitivity, and specificity of the proposed method to be 86.51 CONCLUSIONS: The proposed method provides a unique approach for an early detection of health concerns in an unobtrusive manner. In addition, the suitability of EAL over the CC was determined.
650    _2
$a lidé $7 D006801
650    _2
$a srdeční frekvence $7 D006339
650    12
$a neuronové sítě $7 D016571
650    12
$a balistokardiografie $7 D001450
650    _2
$a lůžka $7 D001513
655    _2
$a časopisecké články $7 D016428
700    1_
$a Busovsky, Damian $u Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
700    1_
$a Fujita, Hamido $u Faculty of Information Technology, HUTECH University, Ho Chi Minh City 700000, Vietnam; Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia; DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada, Spain; Regional Research Center, Iwate Prefectural University, Iwate 0200611, Japan. Electronic address: h.fujita@hutech.edu.vn
700    1_
$a Studnicka, Filip $u Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
700    1_
$a Cimler, Richard $u Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
700    1_
$a Hayashi, Toshitaka $u Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
773    0_
$w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 239, č. - (2023), s. 107623
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37276760 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230718 $b ABA008
991    __
$a 20230801132625 $b ABA008
999    __
$a ok $b bmc $g 1963302 $s 1197057
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 239 $c - $d 107623 $e 20230526 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
LZP    __
$a Pubmed-20230718

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...