Dosing Optimization of Posaconazole in Lung-Transplant Recipients Based on Population Pharmacokinetic Model
Status Publisher Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ-DRO-VFN64165
Ministry of Health
Cooperatio (research area PHAR)
Charles University
PubMed
37760696
PubMed Central
PMC10525625
DOI
10.3390/antibiotics12091399
PII: antibiotics12091399
Knihovny.cz E-zdroje
- Klíčová slova
- antimycotics, covariates, lung transplantation, nonlinear mixed-effects model, posaconazole, therapeutic drug monitoring,
- Publikační typ
- časopisecké články MeSH
Although posaconazole tablets show relatively low variability in pharmacokinetics (PK), the proportion of patients achieving the PK/PD target at the approved uniform dose for both prophylaxis and therapy is not satisfactory. The aim of this study was to develop a posaconazole population PK model in lung-transplant recipients and to propose a covariate-based dosing optimization for both prophylaxis and therapy. In this prospective study, 80 posaconazole concentrations obtained from 32 lung-transplant patients during therapeutic drug monitoring were analyzed using nonlinear mixed-effects modelling, and a Monte Carlo simulation was used to describe the theoretical distribution of posaconazole PK profiles at various dosing regimens. A one-compartment model with both linear absorption and elimination best fit the concentration-time data. The population apparent volume of distribution was 386.4 L, while an apparent clearance of 8.8 L/h decreased by 0.009 L/h with each year of the patient's age. Based on the covariate model, a dosing regimen of 200 mg/day for prophylaxis in patients ˃60 years, 300 mg/day for prophylaxis in patients ˂60 years and for therapy in patients ˃60 years, and 400 mg/day for therapy in patients ˂60 years has been proposed. At this dosing regimen, the PK/PD target for prophylaxis and therapy is reached in 95% and 90% of population, respectively, representing significantly improved outcomes in comparison with the uniform dose.
Zobrazit více v PubMed
Pappas P.G., Alexander B.D., Andes D.R., Hadley S., Kauffman C.A., Freifeld A., Anaissie E.J., Brumble L.M., Herwaldt L., Ito J., et al. Invasive fungal infections among organ transplant recipients: Results of the Transplant-Associated Infection Surveillance Network (TRANSNET) Clin. Infect. Dis. 2010;50:1101–1111. doi: 10.1086/651262. PubMed DOI
Aguilar C.A., Hamandi B., Fegbeutel C., Silveira F.P., Verschuuren E.A., Ussetti P., Chin-Hong P.V., Sole A., Holmes-Liew C., Billaud E.M., et al. Clinical risk factors for invasive aspergillosis in lung transplant recipients: Results of an international cohort study. J. Heart Lung Transplant. 2018;37:1226–1234. doi: 10.1016/j.healun.2018.06.008. PubMed DOI
Doligalski C.T., Benedict K., Cleveland A.A., Park B., Derado G., Pappas P.G., Baddley J.W., Zaas D.W., Harris M.T., Alexander B.D. Epidemiology of invasive mold infections in lung transplant recipients. Am. J. Transplant. 2014;14:1328–1333. doi: 10.1111/ajt.12691. PubMed DOI PMC
Husain S., Sole A., Alexander B.D., Aslam S., Avery R., Benden C., Billaud E.M., Chambers D., Danziger-Isakov L., Fedson S., et al. The 2015 International Society for Heart and Lung Transplantation Guidelines for the management of fungal infections in mechanical circulatory support and cardiothoracic organ transplant recipients: Executive summary. J. Heart Lung Transplant. 2016;35:261–282. doi: 10.1016/j.healun.2016.01.007. PubMed DOI
Patterson T.F., Thompson G.R., 3rd, Denning D.W., Fishman J.A., Hadley S., Herbrecht R., Kontoyiannis D.P., Marr K.A., Morrison V.A., Nguyen M.H., et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016;63:e1–e60. doi: 10.1093/cid/ciw326. PubMed DOI PMC
Husain S., Camargo J.F. Invasive Aspergillosis in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transplant. 2019;33:e13544. doi: 10.1111/ctr.13544. PubMed DOI
Pennington K.M., Yost K.J., Escalante P., Razonable R.R., Kennedy C.C. Antifungal prophylaxis in lung transplant: A survey of United States’ transplant centers. Clin. Transplant. 2019;33:e13630. doi: 10.1111/ctr.13630. PubMed DOI PMC
Dekkers B.G.J., Bakker M., van der Elst K.C.M., Sturkenboom M.G.G., Veringa A., Span L.F.R., Alffenaar J.C. Therapeutic Drug Monitoring of Posaconazole: An Update. Curr. Fungal Infect. Rep. 2016;10:51–61. doi: 10.1007/s12281-016-0255-4. PubMed DOI PMC
Summary of Product Characteristics (Posaconazole), State Institute for Drug Control of Czech Repuplic. [(accessed on 5 April 2023)]. Available online: https://www.ema.europa.eu/en/documents/product-information/noxafil-epar-product-information_cs.pdf.
Ding Q., Huang S., Sun Z., Chen K., Li X., Pei Q. A Review of Population Pharmacokinetic Models of Posaconazole. Drug Des. Devel. Ther. 2022;16:3691–3709. doi: 10.2147/DDDT.S384637. PubMed DOI PMC
Dolton M.J., Ray J.E., Marriott D., McLachlan A.J. Posaconazole exposure-response relationship: Evaluating the utility of therapeutic drug monitoring. Antimicrob. Agents Chemother. 2012;56:2806–2813. doi: 10.1128/AAC.05900-11. PubMed DOI PMC
Zhang H., Nguyen M.H., Clancy C.J., Joshi R., Zhao W., Ensor C., Venkataramanan R., Shields R.K. Pharmacokinetics of Posaconazole Suspension in Lung Transplant Patients with and without Cystic Fibrosis. Antimicrob. Agents Chemother. 2016;60:3558–3562. doi: 10.1128/AAC.00424-16. PubMed DOI PMC
European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs for Antifungal Agents. Version 10.0, valid from 4 February 2020. [(accessed on 4 April 2023)]. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Clinical_breakpoints/AFST_BP_v10.0_200204_updatd_links_200924.pdf.
Stelzer D., Weber A., Ihle F., Matthes S., Ceelen F., Zimmermann G., Kneidinger N., Schramm R., Winter H., Zoller M., et al. Comparing Azole Plasma Trough Levels in Lung Transplant Recipients: Percentage of Therapeutic Levels and Intrapatient Variability. Ther. Drug Monit. 2017;39:93–101. doi: 10.1097/FTD.0000000000000371. PubMed DOI PMC
Petitcollin A., Boglione-Kerrien C., Tron C., Nimubona S., Lalanne S., Lemaitre F., Bellissant E., Verdier M.C. Population Pharmacokinetics of Posaconazole Tablets and Monte Carlo Simulations To Determine whether All Patients Should Receive the Same Dose. Antimicrob. Agents Chemother. 2017;61:e01166-17. doi: 10.1128/AAC.01166-17. PubMed DOI PMC
Mangoni A.A., Jackson S.H. Age-related changes in pharmacokinetics and pharmacodynamics: Basic principles and practical applications. Br. J. Clin. Pharmacol. 2004;57:6–14. doi: 10.1046/j.1365-2125.2003.02007.x. PubMed DOI PMC
De Sutter P.J., Gasthuys E., Van Braeckel E., Schelstraete P., Van Biervliet S., Van Bocxlaer J., Vermeulen A. Pharmacokinetics in Patients with Cystic Fibrosis: A Systematic Review of Data Published Between 1999 and 2019. Clin. Pharmacokinet. 2020;59:1551–1573. doi: 10.1007/s40262-020-00932-9. PubMed DOI
Dvorackova E., Sima M., Petrus J., Klapkova E., Hubacek P., Pozniak J., Havlin J., Lischke R., Slanar O. Ganciclovir Pharmacokinetics and Individualized Dosing Based on Covariate in Lung Transplant Recipients. Pharmaceutics. 2022;14:408. doi: 10.3390/pharmaceutics14020408. PubMed DOI PMC
Lignell A., Lowdin E., Cars O., Chryssanthou E., Sjolin J. Posaconazole in human serum: A greater pharmacodynamic effect than predicted by the non-protein-bound serum concentration. Antimicrob. Agents Chemother. 2011;55:3099–3104. doi: 10.1128/AAC.01671-10. PubMed DOI PMC
European Medicines Agency Guideline on Bioanalytical Method Validation. EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2**. Published: 21 July 2011. [(accessed on 5 April 2023)]. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf.
Sima M., Pokorna P., Hronova K., Slanar O. Effect of co-medication on the pharmacokinetic parameters of phenobarbital in asphyxiated newborns. Physiol. Res. 2015;64:S513–S519. doi: 10.33549/physiolres.933213. PubMed DOI