-
Je něco špatně v tomto záznamu ?
Evolutionary analysis of cellular reduction and anaerobicity in the hyper-prevalent gut microbe Blastocystis
K. Záhonová, RS. Low, CJ. Warren, D. Cantoni, EK. Herman, L. Yiangou, CA. Ribeiro, Y. Phanprasert, IR. Brown, S. Rueckert, NL. Baker, J. Tachezy, EL. Betts, E. Gentekaki, M. van der Giezen, CG. Clark, AP. Jackson, JB. Dacks, AD. Tsaousis
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Cell Press Free Archives
od 1995-01-01 do Před 1 rokem
Free Medical Journals
od 1995 do Před 1 rokem
Elsevier Open Access Journals
od 1995-01-01 do 2023-06-19
Elsevier Open Archive Journals
od 1995-01-01 do Před 1 rokem
- MeSH
- Blastocystis * genetika MeSH
- Eukaryota MeSH
- lidé MeSH
- mitochondrie genetika metabolismus MeSH
- organely metabolismus MeSH
- střevní mikroflóra * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Blastocystis is the most prevalent microbial eukaryote in the human and animal gut, yet its role as commensal or parasite is still under debate. Blastocystis has clearly undergone evolutionary adaptation to the gut environment and possesses minimal cellular compartmentalization, reduced anaerobic mitochondria, no flagella, and no reported peroxisomes. To address this poorly understood evolutionary transition, we have taken a multi-disciplinary approach to characterize Proteromonas lacertae, the closest canonical stramenopile relative of Blastocystis. Genomic data reveal an abundance of unique genes in P. lacertae but also reductive evolution of the genomic complement in Blastocystis. Comparative genomic analysis sheds light on flagellar evolution, including 37 new candidate components implicated with mastigonemes, the stramenopile morphological hallmark. The P. lacertae membrane-trafficking system (MTS) complement is only slightly more canonical than that of Blastocystis, but notably, we identified that both organisms encode the complete enigmatic endocytic TSET complex, a first for the entire stramenopile lineage. Investigation also details the modulation of mitochondrial composition and metabolism in both P. lacertae and Blastocystis. Unexpectedly, we identify in P. lacertae the most reduced peroxisome-derived organelle reported to date, which leads us to speculate on a mechanism of constraint guiding the dynamics of peroxisome-mitochondrion reductive evolution on the path to anaerobiosis. Overall, these analyses provide a launching point to investigate organellar evolution and reveal in detail the evolutionary path that Blastocystis has taken from a canonical flagellated protist to the hyper-divergent and hyper-prevalent animal and human gut microbe.
Biosciences University of Exeter Stocker Road Exeter EX4 4QD UK
Institute of Infection Veterinary and Ecological Sciences University of Liverpool Liverpool UK
School of Applied Sciences Sighthill Campus Room 3 B 36 Edinburgh EH11 4BN Scotland
School of Science Mae Fah Luang Universit 333 Moo 1 T Tasud Muang District Chiang Rai 57100 Thailand
The Earlham Institute Norwich Research Park Norwich NR4 7UZ UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23011026
- 003
- CZ-PrNML
- 005
- 20230801132750.0
- 007
- ta
- 008
- 230718s2023 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cub.2023.05.025 $2 doi
- 035 __
- $a (PubMed)37267944
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Záhonová, Kristína $u Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic; Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava 710 00, Czech Republic
- 245 10
- $a Evolutionary analysis of cellular reduction and anaerobicity in the hyper-prevalent gut microbe Blastocystis / $c K. Záhonová, RS. Low, CJ. Warren, D. Cantoni, EK. Herman, L. Yiangou, CA. Ribeiro, Y. Phanprasert, IR. Brown, S. Rueckert, NL. Baker, J. Tachezy, EL. Betts, E. Gentekaki, M. van der Giezen, CG. Clark, AP. Jackson, JB. Dacks, AD. Tsaousis
- 520 9_
- $a Blastocystis is the most prevalent microbial eukaryote in the human and animal gut, yet its role as commensal or parasite is still under debate. Blastocystis has clearly undergone evolutionary adaptation to the gut environment and possesses minimal cellular compartmentalization, reduced anaerobic mitochondria, no flagella, and no reported peroxisomes. To address this poorly understood evolutionary transition, we have taken a multi-disciplinary approach to characterize Proteromonas lacertae, the closest canonical stramenopile relative of Blastocystis. Genomic data reveal an abundance of unique genes in P. lacertae but also reductive evolution of the genomic complement in Blastocystis. Comparative genomic analysis sheds light on flagellar evolution, including 37 new candidate components implicated with mastigonemes, the stramenopile morphological hallmark. The P. lacertae membrane-trafficking system (MTS) complement is only slightly more canonical than that of Blastocystis, but notably, we identified that both organisms encode the complete enigmatic endocytic TSET complex, a first for the entire stramenopile lineage. Investigation also details the modulation of mitochondrial composition and metabolism in both P. lacertae and Blastocystis. Unexpectedly, we identify in P. lacertae the most reduced peroxisome-derived organelle reported to date, which leads us to speculate on a mechanism of constraint guiding the dynamics of peroxisome-mitochondrion reductive evolution on the path to anaerobiosis. Overall, these analyses provide a launching point to investigate organellar evolution and reveal in detail the evolutionary path that Blastocystis has taken from a canonical flagellated protist to the hyper-divergent and hyper-prevalent animal and human gut microbe.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a Blastocystis $x genetika $7 D016844
- 650 12
- $a střevní mikroflóra $x genetika $7 D000069196
- 650 _2
- $a mitochondrie $x genetika $x metabolismus $7 D008928
- 650 _2
- $a organely $x metabolismus $7 D015388
- 650 _2
- $a Eukaryota $7 D056890
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Low, Ross S $u Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
- 700 1_
- $a Warren, Christopher J $u Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
- 700 1_
- $a Cantoni, Diego $u Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
- 700 1_
- $a Herman, Emily K $u Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, 2-31 General Services Building, Edmonton, AB T6G 2H1, Canada
- 700 1_
- $a Yiangou, Lyto $u Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
- 700 1_
- $a Ribeiro, Cláudia A $u Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
- 700 1_
- $a Phanprasert, Yasinee $u Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; School of Science, Mae Fah Luang Universit, 333 Moo 1, T. Tasud, Muang District, Chiang Rai 57100, Thailand
- 700 1_
- $a Brown, Ian R $u Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
- 700 1_
- $a Rueckert, Sonja $u School of Applied Sciences, Sighthill Campus, Room 3.B.36, Edinburgh EH11 4BN, Scotland; Faculty of Biology, AG Eukaryotische Mikrobiologie, Universitätsstrasse 5, S05 R04 H83, Essen 45141, Germany
- 700 1_
- $a Baker, Nicola L $u Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
- 700 1_
- $a Tachezy, Jan $u Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic
- 700 1_
- $a Betts, Emma L $u Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK; School of Applied Sciences, Sighthill Campus, Room 3.B.36, Edinburgh EH11 4BN, Scotland
- 700 1_
- $a Gentekaki, Eleni $u School of Science, Mae Fah Luang Universit, 333 Moo 1, T. Tasud, Muang District, Chiang Rai 57100, Thailand; Gut Microbiome Research Group, Mae Fah Luang University, 333 Moo 1, T. Tasud, Muang District, Chiang Rai 57100, Thailand
- 700 1_
- $a van der Giezen, Mark $u Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger Richard Johnsens Gate 4, 4021 Stavanger, Norway; Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
- 700 1_
- $a Clark, C Graham $u Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- 700 1_
- $a Jackson, Andrew P $u Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- 700 1_
- $a Dacks, Joel B $u Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Centre for Life's Origin and Evolution, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK. Electronic address: dacks@ualberta.ca
- 700 1_
- $a Tsaousis, Anastasios D $u Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK. Electronic address: a.tsaousis@kent.ac.uk
- 773 0_
- $w MED00006482 $t Current biology : CB $x 1879-0445 $g Roč. 33, č. 12 (2023), s. 2449-2464.e8
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37267944 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230718 $b ABA008
- 991 __
- $a 20230801132747 $b ABA008
- 999 __
- $a ok $b bmc $g 1963437 $s 1197291
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 33 $c 12 $d 2449-2464.e8 $e 20230601 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
- LZP __
- $a Pubmed-20230718