-
Je něco špatně v tomto záznamu ?
A new method for estimating growth and fertility rates using age-at-death ratios in small skeletal samples: The effect of mortality and stochastic variation
P. Galeta, A. Pankowská
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-10-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- celosvětové zdraví MeSH
- dítě MeSH
- fertilita MeSH
- lidé MeSH
- mortalita MeSH
- naděje dožití * MeSH
- porodnost * MeSH
- tabulky života MeSH
- věkové rozložení MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The common procedure for reconstructing growth and fertility rates from skeletal samples involves regressing a growth or fertility rate on the age-at-death ratio, an indicator that captures the proportion of children and juveniles in a skeletal sample. Current methods derive formulae for predicting growth and fertility rates in skeletal samples from modern reference populations with many deaths, although recent levels of mortality are not good proxies for prehistoric populations, and stochastic error may considerably affect the age distributions of deaths in small skeletal samples. This study addresses these issues and proposes a novel algorithm allowing a customized prediction formula to be produced for each target skeletal sample, which increases the accuracy of growth and fertility rate estimation. Every prediction equation is derived from a unique reference set of simulated skeletal samples that match the target skeletal sample in size and assumed mortality level of the population that the target skeletal sample represents. The mortality regimes of reference populations are based on model life tables in which life expectancy can be flexibly set between 18 and 80 years. Regression models provide a reliable prediction; the models explain 83-95% of total variance. Due to stochastic variation, the prediction error is large when the estimate is based on a small number of skeletons but decreases substantially with increasing sample size. The applicability of our approach is demonstrated by a comparison with baseline estimates, defined here as predictions based on the widely used Bocquet-Appel (2002, doi: 10.1086/342429) equation.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23011119
- 003
- CZ-PrNML
- 005
- 20230801132823.0
- 007
- ta
- 008
- 230718s2023 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0286580 $2 doi
- 035 __
- $a (PubMed)37267306
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Galeta, Patrik $u Department of Anthropology, University of West Bohemia, Pilsen, Czech Republic $1 https://orcid.org/0000000249371369 $7 mzk2003187362
- 245 12
- $a A new method for estimating growth and fertility rates using age-at-death ratios in small skeletal samples: The effect of mortality and stochastic variation / $c P. Galeta, A. Pankowská
- 520 9_
- $a The common procedure for reconstructing growth and fertility rates from skeletal samples involves regressing a growth or fertility rate on the age-at-death ratio, an indicator that captures the proportion of children and juveniles in a skeletal sample. Current methods derive formulae for predicting growth and fertility rates in skeletal samples from modern reference populations with many deaths, although recent levels of mortality are not good proxies for prehistoric populations, and stochastic error may considerably affect the age distributions of deaths in small skeletal samples. This study addresses these issues and proposes a novel algorithm allowing a customized prediction formula to be produced for each target skeletal sample, which increases the accuracy of growth and fertility rate estimation. Every prediction equation is derived from a unique reference set of simulated skeletal samples that match the target skeletal sample in size and assumed mortality level of the population that the target skeletal sample represents. The mortality regimes of reference populations are based on model life tables in which life expectancy can be flexibly set between 18 and 80 years. Regression models provide a reliable prediction; the models explain 83-95% of total variance. Due to stochastic variation, the prediction error is large when the estimate is based on a small number of skeletons but decreases substantially with increasing sample size. The applicability of our approach is demonstrated by a comparison with baseline estimates, defined here as predictions based on the widely used Bocquet-Appel (2002, doi: 10.1086/342429) equation.
- 650 _2
- $a dítě $7 D002648
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a porodnost $7 D001723
- 650 12
- $a naděje dožití $7 D008017
- 650 _2
- $a tabulky života $7 D015993
- 650 _2
- $a věkové rozložení $7 D017677
- 650 _2
- $a celosvětové zdraví $7 D014943
- 650 _2
- $a mortalita $7 D009026
- 650 _2
- $a fertilita $7 D005298
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pankowská, Anna $u Department of Anthropology, University of West Bohemia, Pilsen, Czech Republic
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 18, č. 6 (2023), s. e0286580
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37267306 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230718 $b ABA008
- 991 __
- $a 20230801132819 $b ABA008
- 999 __
- $a ok $b bmc $g 1963490 $s 1197384
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 18 $c 6 $d e0286580 $e 20230602 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20230718