A new method for estimating growth and fertility rates using age-at-death ratios in small skeletal samples: The effect of mortality and stochastic variation
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37267306
PubMed Central
PMC10237468
DOI
10.1371/journal.pone.0286580
PII: PONE-D-22-31184
Knihovny.cz E-resources
- MeSH
- Global Health MeSH
- Child MeSH
- Fertility MeSH
- Humans MeSH
- Mortality MeSH
- Life Expectancy * MeSH
- Birth Rate * MeSH
- Life Tables MeSH
- Age Distribution MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The common procedure for reconstructing growth and fertility rates from skeletal samples involves regressing a growth or fertility rate on the age-at-death ratio, an indicator that captures the proportion of children and juveniles in a skeletal sample. Current methods derive formulae for predicting growth and fertility rates in skeletal samples from modern reference populations with many deaths, although recent levels of mortality are not good proxies for prehistoric populations, and stochastic error may considerably affect the age distributions of deaths in small skeletal samples. This study addresses these issues and proposes a novel algorithm allowing a customized prediction formula to be produced for each target skeletal sample, which increases the accuracy of growth and fertility rate estimation. Every prediction equation is derived from a unique reference set of simulated skeletal samples that match the target skeletal sample in size and assumed mortality level of the population that the target skeletal sample represents. The mortality regimes of reference populations are based on model life tables in which life expectancy can be flexibly set between 18 and 80 years. Regression models provide a reliable prediction; the models explain 83-95% of total variance. Due to stochastic variation, the prediction error is large when the estimate is based on a small number of skeletons but decreases substantially with increasing sample size. The applicability of our approach is demonstrated by a comparison with baseline estimates, defined here as predictions based on the widely used Bocquet-Appel (2002, doi: 10.1086/342429) equation.
See more in PubMed
Boldsen JL, Milner GR, Ousley SD. Paleodemography: from archaeology and skeletal age estimation to life in the past. Yearb Biol Anthropol. 2022; 178: 151–180. doi: 10.1002/ajpa.24462 PubMed DOI
Shennan S, Downey SS, Timpson A, Edinborough K, Colledge S, et al.. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat Commun. 2013; 4: 1–8. doi: 10.1038/ncomms3486 PubMed DOI PMC
Campbell K, Wood J. Fertility in traditional societies. In: Diggory P, Teper S, Potts M, editors. Natural human reritlity: social and biological mechanism. London: Macmillan; 1988. pp. 36–69.
Schmidt I, Hilpert J, Kretschmer I, Peters R, Broich M, et al.. Approaching prehistoric demography: proxies, scales and scope of the Cologne Protocol in European contexts. Philos Trans R Soc Lond, B, Biol Sci. 2021; 376: 20190714. doi: 10.1098/rstb.2019.0714 PubMed DOI PMC
Page AE, Viguier S, Dyble M, Smith D, Chaudhary N, et al.. Reproductive trade-offs in extant hunter-gatherers suggest adaptive mechanism for the Neolithic expansion. Proc Natl Acad Sci. 2016; 113: 4694–4699. doi: 10.1073/pnas.1524031113 PubMed DOI PMC
Shennan S, Sear R. Archaeology, demography and life history theory together can help us explain past and present population patterns. Philos Trans R Soc Lond, B, Biol Sci. 2021; 376: 20190711. doi: 10.1098/rstb.2019.0711 PubMed DOI PMC
Graber RB. A rigorous approach to population pressure’s contribution to cultural evolution. In: Paine RR, editor. Integrating archaeological demography: Multidisciplinary approaches to prehistoric population. Carbondale: Southern Illinois University at Carbondale; 1997. pp. 263–284.
Bocquet-Appel J-P. Explaining the Neolithic demographic transition. In: Bocquet-Appel J-P, Bar-Yosef O, editors. The Neolithic demographic transition and its consequences. 1st ed. New York: Springer; 2008. pp. 35–55.
Page AE, French JC. Reconstructing prehistoric demography: what role for extant hunter-gatherers? Evol Anthropol Issues News Rev. 2020; 29: 332–345. doi: 10.1002/evan.21869 PubMed DOI
Tallavaara M, Jørgensen EK. Why are population growth rate estimates of past and present hunter–gatherers so different? Philos Trans R Soc Lond, B, Biol Sci. 2021; 376: 20190708. doi: 10.1098/rstb.2019.0708 PubMed DOI PMC
Zahid HJ, Robinson E, Kelly RL. Agriculture, population growth, and statistical analysis of the radiocarbon record. Proc Natl Acad Sci. 2016; 113: 931–935. doi: 10.1073/pnas.1517650112 PubMed DOI PMC
Bocquet-Appel J-P. Paleoanthropological traces of a Neolithic demographic transition. Curr Anthropol. 2002; 43: 637–650. 10.1086/342429 DOI
Bocquet-Appel J-P. The agricultural demographic transition during and after the agriculture inventions. Curr Anthropol. 2011; 52: S497–S510. 10.1086/659243 DOI
Downey SS, Bocaege E, Kerig T, Edinborough K, Shennan S. The Neolithic demographic transition in Europe: correlation with juvenility index supports interpretation of the summed calibrated radiocarbon date probability distribution (SCDPD) as a valid demographic proxy. PLoS One. 2014; 9: e105730. doi: 10.1371/journal.pone.0105730 PubMed DOI PMC
Jackes M, Meiklejohn C. The paleodemography of central Portugal and the Mesolithic-Neolithic transition. In: Bocquet-Appel J-P, editor. Recent advances in palaeodemography: data, techniques, patterns. Dordrecht: Springer; 2008. pp. 209–258.
Bocquet-Appel J-P, Naji S. Testing the hypothesis of a worldwide Neolithic demographic transition: corroboration from American cemeteries. Curr Anthropol. 2006; 47: 341–365. 10.1086/498948 DOI
Kohler TA, Reese KM. Long and spatially variable Neolithic demographic transition in the North American Southwest. Proc Natl Acad Sci. 2014; 111: 10101–10106. doi: 10.1073/pnas.1404367111 PubMed DOI PMC
Lesure RG, Martin LS, Bishop KJ, Jackson B, Chykerda CM. The Neolithic demographic transition in Mesoamerica. Curr Anthropol. 2014; 55: 654–664. 10.1086/678325 DOI
Guerrero E, Naji S, Bocquet-Appel J-P. The signal of the Neolithic demographic transition in the Levant. In: Bocquet-Appel J-P, Bar-Yosef O, editors. The Neolithic demographic transition and its consequences. 1st ed. New York: Springer; 2008. pp. 57–80.
Bellwood P, Oxenham M. The expansions of farming societies and the role of the Neolithic demographic transition. In: Bocquet-Appel J-P, Bar-Yosef O, editors. The Neolithic demographic transition and its consequences. New York: Springer; 2008. pp. 13–34.
Milner GR, Boldsen JL. Population trends and the transition to agriculture: global processes as seen from North America. Proc Natl Acad Sci. 2023; 120: e2209478119. doi: 10.1073/pnas.2209478119 PubMed DOI PMC
Bocquet-Appel J-P, Masset C. Farewell to paleodemography. J Hum Evol. 1982; 11: 321–333. 10.1016/S0047-2484(82)80023-7 DOI
Buikstra JE, Konigsberg LW, Bullington J. Fertility and the development of agriculture in the prehistoric Midwest. Am Antiq. 1986; 51: 528–546. 10.2307/281750 DOI
McFadden C, Oxenham MF. The D0–14/D ratio: A new paleodemographic index and equation for estimating total fertility rates. Am J Phys Anthropol. 2018; 165: 471–479. doi: 10.1002/ajpa.23365 PubMed DOI
McFadden C, Oxenham MF. Rate of natural population increase as a paleodemographic measure of growth. J Archaeol Sci: Rep. 2018; 19: 352–356. 10.1016/j.jasrep.2018.03.012 DOI
Larsen CS, Hillson SW, Boz B, Pilloud MA, Sadvari JW, et al.. Bioarchaeology of Neolithic Çatalhöyük: lives and lifestyles of an early farming society in transition. J World Prehist. 2015; 28: 27–68. 10.1007/s10963-015-9084-6 DOI
Robbins G. Don’t throw out the baby with the bathwater: estimating fertility from subadult skeletons. Int J Osteoarchaeol. 2011; 21: 717–722. 10.1002/oa.1181 DOI
McFadden C. The past, present and future of skeletal analysis in palaeodemography. Proc R Soc Lond B Biol Sci. 2021; 376: 20190709. doi: 10.1098/rstb.2019.0709 PubMed DOI PMC
Christensen AM, Passalacqua NV, Bartelink EJ. Forensic anthropology: current methods and practice. Oxford: Academic Press; 2019.
French JC, Riris P, Fernandez-Lopez de Pablo J, Lozano S, Silva F. A manifesto for palaeodemography in the twenty-first century. Philos Trans R Soc Lond, B, Biol Sci. 2021; 376: 20190707. doi: 10.1098/rstb.2019.0707 PubMed DOI PMC
Manifold BM. Differential preservation of children’s bones and teeth recovered from early medieval cemeteries: possible influences for the forensic recovery of non-adult skeletal remains. Anthropol Rev. 2013; 76: 23–49. 10.2478/anre-2013-0007 DOI
Pokines JT, De La Paz JS. Recovery rates of human fetal skeletal remains using varying mesh sizes. J Forensic Sci. 2016; 61: S184–S189. doi: 10.1111/1556-4029.12922 PubMed DOI
Guy H, Masset C, Baud C-A. Infant taphonomy. Int J Osteoarchaeol. 1997; 7: 221–229. 10.1002/(SICI)1099-1212(199705)7:3<221::AID-OA338>3.0.CO;2-Z DOI
Maines E, Sellier P, Chambron P, Langlois O. Burying children and infants at Kadruka 23: new insights into juvenile identity and disposal of the dead in the Nubian Neolithic. In: Murphy E, Le Roy M, editors. Children, Death and Burial: Archaeological Discourses. Oxford: Oxbow books; 2017. pp. 43–56.
French JC, Chamberlain AT. Demographic uniformitarianism: the theoretical basis of prehistoric demographic research and its cross-disciplinary challenges. Philos Trans R Soc Lond, B, Biol Sci. 2021; 376: 20190720. doi: 10.1098/rstb.2019.0720 PubMed DOI PMC
Howell N. Toward a uniformitarian theory of human paleodemography. J Hum Evol. 1976; 5: 25–40. 10.1016/0047-2484(76)90097-X DOI
Coale AJ, Demeny PG, Vaughan B. Regional model life tables and stable populations. New York: Academic Press; 1983.
Paine RR, Harpending HC. Assessing the reliability of paleodemographic fertility estimators using simulated skeletal distributions. Am J Phys Anthropol. 1996; 101: 151–159. 10.1002/(SICI)1096-8644(199610)101:2<151::AID-AJPA3>3.0.CO;2-5 PubMed DOI
Chamberlain AT. Demography in archaeology. Cambridge: Cambridge University Press; 2006.
Paine RR. Model life tables as a measure of bias in the Grasshopper pueblo skeletal series. Am Antiq. 1989; 54: 820–824. 10.2307/280686 DOI
Séguy I, Buchet L. Handbook of palaeodemography. Cham: Springer; 2013.
Gage TB, DeWitte S. What do we know about the agricultural demographic transition? Curr Anthropol. 2009; 50: 649–655. doi: 10.1086/605017 PubMed DOI PMC
McCaa R. Paleodemography of the Americas: from ancient times to colonialism and beyond. In: Steckel RH, Rose JC, editors. The backbone of history: health and nutrition in the Western hemisphere. Cambridge: Cambridge University Press; 2002. pp. 94–124.
Hinde A. Demographic methods. New York: Routledge; 2014.
Gage TB, Dyke B. Parameterizing abridged mortality tables: the Siler three-component hazard model. Hum Biol. 1986; 58: 275–291. http://www.jstor.org/stable/41463747 PubMed
Hinde A. Demographic perspectives on human population dynamics. In: Macbeth H, Collinson P, editors. Human population dynamics: cross-disciplinary perspectives. Cambridge: Cambridge University Press; 2002. pp. 17–40.
Paine RR, Harpending HC. Effect of sample bias on paleodemographic fertility estimates. Am J Phys Anthropol. 1998; 105: 231–240. 10.1002/(SICI)1096-8644(199802)105:2<231::AID-AJPA9>3.0.CO;2-X PubMed DOI
Wood SN. Generalized additive models: an introduction with R. Boca Raton: CRC press; 2017.
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020.
Jackes M. Representativeness and bias in archaeological skeletal samples. In: Agarwal SC, Glencross B, editors. Social bioarchaeology. Chichester: Blackwell Publishing Ltd; 2011. pp. 107–146.
Bentley GR, Paine RR, Boldsen JL. Fertility changes with the prehistoric transition to agriculture. In: Ellison PT, editor. Reproductive ecology and human evolution. New York: Aldine de Gruyter; 2001. pp. 203–231.
Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol. 2003; 22: 85–93. doi: 10.1002/uog.122 PubMed DOI
Scheuer L, Black SM. Developmental juvenile osteology. San Diego, CA: Academic Press; 2000.
Milner GR, Wood JW, Boldsen J. Paleodemography: problems, progress, and potential. In: Katzenberg MA, Grauer AL, editors. Biological anthropology of the human skeleton. Hoboken: Wiley-Blackwell; 2019. pp. 593–633.
McFadden C, Oxenham MF. The impacts of underenumeration and age estimation error on the D0–14/D ratio and palaeodemographic measures. J Archaeol Sci: Rep. 2019; 23: 57–61. 10.1016/j.jasrep.2018.10.033 DOI
Ledermann S. Nouvelles tables-types de mortalité. Travaux et documents 53. Paris: INED; 1969.
Brass W. On the scale of mortality. In: Brass W, editor. Biological aspects of demography. London: Taylor and Francis; 1971. pp. 69–110.
Ewbank DC, Gomez de Leon JC, Stoto MA. A reducible four-parameter system of model life tables. Popul Stud (Camb). 1983; 37: 105–127. doi: 10.1080/00324728.1983.10405927 PubMed DOI
Séguy I, Buchet L, Bringé A. Model life tables for pre-industrial populations and their application in paleodemography. In: Bocquet-Appel J-P, editor. Recent advances in palaeodemography: data, techniques, patterns. Dordrecht: Springer; 2008. pp. 83–117.