Versican G1 Fragment Establishes a Strongly Stabilized Interaction with Hyaluronan-Rich Expanding Matrix during Oocyte Maturation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32218212
PubMed Central
PMC7177942
DOI
10.3390/ijms21072267
PII: ijms21072267
Knihovny.cz E-zdroje
- Klíčová slova
- extracellular matrix, hyaluronan, oocyte-cumulus complex, versican,
- MeSH
- buněčná diferenciace MeSH
- epitopy imunologie MeSH
- kultivované buňky MeSH
- oocyty cytologie imunologie metabolismus MeSH
- prasata MeSH
- versikany genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- epitopy MeSH
- versikany MeSH
In the mammalian ovary, the hyaluronan (HA)-rich cumulus extracellular matrix (ECM) organized during the gonadotropin-induced process of oocyte maturation is essential for ovulation of the oocyte-cumulus complex (OCC) and fertilization. Versican is an HA-binding proteoglycan that regulates cell function and ECM assembly. Versican cleavage and function remain to be determined in ovarian follicle. We investigated versican expression in porcine ovarian follicles by real-time (RT)-PCR and western blotting. The aims of the present work were to determine whether 1) versican was produced and cleaved by porcine OCCs during gonadotropin stimulation; 2) these processes were autonomous or required the participation of mural granulosa cells (MGCs); and 3) versican cleavage was involved in the formation or degradation of expanded cumulus ECM. We demonstrate two cleavage products of G1 domain of versican (V1) accumulated in the HA-rich cumulus ECM. One of them, a G1-DPEAAE N-terminal fragment (VG1) of ~70 kDa, was generated from V1 during organization of HA in in vivo and in vitro expanded porcine OCCs. Second, the V1-cleaved DPEAAE-positive form of ~65 kDa was the only species detected in MGCs. No versican cleavage products were detected in OCCs cultured without follicular fluid. In summary, porcine OCCs are autonomous in producing and cleaving V1; the cleaved fragment of ~70 kDa VG1 is specific for formation of the expanded cumulus HA-rich ECM.
Department of Biomedicine and Prevention University of Rome Tor Vergata 00133 Rome Italy
Institute of Animal Physiology and Genetics Czech Academy of Sciences 27721 Libechov Czech Republic
Zobrazit více v PubMed
Richards J.S., Russell D.L., Ochsner S., Hsieh M., Doyle K.H., Falender A.E., Lo Y.K., Sharma S.C. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog. Horm. Res. 2002;57:195–220. doi: 10.1210/rp.57.1.195. PubMed DOI
Russell D.L., Salustri A. Extracellular matrix of the cumulus-oocyte complex. Semin. Reprod. Med. 2006;24:217–227. doi: 10.1055/s-2006-948551. PubMed DOI
Nagyova E. The biological role of hyaluronan-rich oocyte-cumulus extracellular matrix in female reproduction. Int. J. Mol. Sci. 2018;19:283. doi: 10.3390/ijms19010283. PubMed DOI PMC
Camaioni A., Salustri A., Yanagishita M., Hascall V.C. Proteoglycans and proteins in the extracellular matrix of mouse cumulus cell-oocyte complexes. Arch. Biochem. Biophys. 1996;325:190–198. doi: 10.1006/abbi.1996.0024. PubMed DOI
Nagyova E., Camaioni A., Prochazka R., Salustri A. Covalent transfer of heavy chains of inter-alpha-trypsin inhibitor family proteins to hyaluronan in in vivo and in vitro expanded porcine oocyte-cumulus complexes. Biol. Reprod. 2004;71:1838–1843. doi: 10.1095/biolreprod.104.029595. PubMed DOI
Nagyova E., Camaioni A., Prochazka R., Day A.J., Salustri A. Synthesis of tumor necrosis factor alpha-induced protein 6 in porcine preovulatory follicles: A study with A38 antibody. Biol. Reprod. 2008;78:903–909. doi: 10.1095/biolreprod.107.064832. PubMed DOI
McArthur M.E., Irving-Rodgers H.F., Byers S., Rodgers R.J. Identification and immunolocalization of decorin, versican, perlecan, nidogen, and chondroitin sulfate proteoglycans in bovine small-antral ovarian follicles. Biol. Reprod. 2000;63:913–924. doi: 10.1095/biolreprod63.3.913. PubMed DOI
Russell D.L., Doyle K.M., Ochsner S.A., Sandy J.D., Richards J.S. Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation. J. Biol. Chem. 2003;278:42330–42339. doi: 10.1074/jbc.M300519200. PubMed DOI
Rodgers R.J., Irving-Rodgers H.F. Formation of the ovarian follicular antrum and follicular fluid. Biol. Reprod. 2010;82:1021–1029. doi: 10.1095/biolreprod.109.082941. PubMed DOI
Foulcer S.J., Day A.J., Apte S.S. Isolation and purification of versican and analysis of versican proteolysis. Methods Mol. Biol. 2015;1229:587–604. doi: 10.1007/978-1-4939-1714-3_46. PubMed DOI PMC
Ito K., Shinomura T., Zako M., Ujita M., Kimata K. Multiple forms of mouse PG-M, a large chondroitin sulfate proteoglycan generated by alternative splicing. J. Biol. Chem. 1995;270:958–965. doi: 10.1074/jbc.270.2.958. PubMed DOI
Schmalfeldt M., Dours-Zihmermann M.T., Winterhalter K.H., Zimmermann D.R. Versican V2 is a major extracellular matrix component of the mature bovine brain. J. Biol. Chem. 1998;273:15758–15764. doi: 10.1074/jbc.273.25.15758. PubMed DOI
Kresse H., Schonherr E. Proteoglycans of the extracellular matrix and growth control. J. Cell. Physiol. 2001;189:266–274. doi: 10.1002/jcp.10030. PubMed DOI
Wight T.N. Versican: A versatile extracellular matrix proteoglycan in cell biology. Curr. Opin. Cell Biol. 2002;14:617–623. doi: 10.1016/S0955-0674(02)00375-7. PubMed DOI
Lemire J.M., Merrilees M.J., Braun K.R., Wight T.N. Overexpression of the V3 variant of versican alters arterial smooth muscle cell adhesion, migration, and proliferation in vitro. J. Cell. Physiol. 2002;190:38–45. doi: 10.1002/jcp.10043. PubMed DOI
Sandy J.D., Westling J., Kenagy R.D., Iruela-Arispe M.L., Verscharen C., Rodriguez-Mazaneque J.C., Zimmermann D.R., Lemire J.M., Fischer J.W., Wight T.N., et al. Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J. Biol. Chem. 2001;276:13372–13378. doi: 10.1074/jbc.M009737200. PubMed DOI
Wight T.N. Provisional matrix: A role for versican and hyaluronan. Matrix Biol. 2017;60–61:38–56. doi: 10.1016/j.matbio.2016.12.001. PubMed DOI PMC
Murasawa Y., Nakamura H., Watanabe K., Kanoh H., Koyama E., Fujii S., Kimata K., Zako M., Yoneda M., Isogai Z. The Versican G1 fragment and serum-derived hyaluronan-associated proteins interact and form a complex in granulation tissue of pressure ulcers. Am. J. Pathol. 2018;188:432–449. doi: 10.1016/j.ajpath.2017.10.015. PubMed DOI
Toole B.P., Wight T.N., Tammi M.I. Hyaluronan-cell interactions in cancer and vascular disease. J. Biol. Chem. 2002;277:4593–4596. doi: 10.1074/jbc.R100039200. PubMed DOI
Russell D.L., Ochsner S.A., Hsieh M., Mulders S., Richards J.S. Hormone-regulated expression and localization of versican in the rodent ovary. Endocrinology. 2003;144:1020–1031. doi: 10.1210/en.2002-220434. PubMed DOI
Dunning K.R., Lane M., Brown H.M., Yeo C., Robker R.L., Russell D.L. Altered composition of the cumulus-oocyte complex matrix during in vitro maturation of oocytes. Hum. Reprod. 2007;22:2842–2850. doi: 10.1093/humrep/dem277. PubMed DOI
Shimada M., Nishibori M., Yamashita Y., Ito J., Mori T., Richards J.S. Down-regulated expression of A disintegrin and metalloproteinase with thrombospondin-like repeats-1 by progesterone receptor antagonist is associated with impaired expansion of porcine cumulus-oocyte complexes. Endocrinology. 2004;145:4603–4614. doi: 10.1210/en.2004-0542. PubMed DOI
Nagyova E. Organization of the expanded cumulus-extracellular matrix in preovulatory follicles: A role for inter-alpha-trypsin inhibitor. Endocr. Regul. 2015;49:37–45. doi: 10.4149/endo_2015_01_37. PubMed DOI
Baranova N.S., Foulcer S.J., Briggs D.C., Tilakaratna V., Enghild J.J., Milner C.M., Day A.J., Richter R.P. Inter-α-inhibitor impairs TSG-6induced hyaluronan cross-linking. J. Biol. Chem. 2013;288:29642–29653. doi: 10.1074/jbc.M113.477422. PubMed DOI PMC
Salustri A., Campagnolo L., Klinger F.G., Camaioni A. Molecular organization and mechanical properties of the hyaluronan matrix surrounding the mammalian oocyte. Matrix Biol. 2019;78:11–23. doi: 10.1016/j.matbio.2018.02.002. PubMed DOI
Chen X., Bonfiglio R., Banerji S., Jackson D.G., Salustri A., Richter R.P. Micromechanical analysis of the hyaluronan-rich matrix surrounding the oocyte reveals a uniquely soft and elastic composition. Biophys. J. 2016;110:2779–2789. doi: 10.1016/j.bpj.2016.03.023. PubMed DOI PMC
Stanton H., Melrose J., Little C.B., Fosang A.J. Proteoglycan degradation by the ADAMTS family of proteinases. Biochim. Biophys. Acta. 2011;812:1616–1629. doi: 10.1016/j.bbadis.2011.08.009. PubMed DOI
Nagyova E. Regulation of cumulus expansion and hyaluronan synthesis in porcine oocyte-cumulus complexes during in vitro maturation. Endocr. Regul. 2012;46:225–235. doi: 10.4149/endo_2012_04_225. PubMed DOI
D’Alessandris C., Canipari R., Di Giacomo M., Epifano O., Camaioni A., Siracusa G., Salustri A. Control of mouse cumulus cell-oocyte complex integrity before and after ovulation: Plasminogen activator synthesis and matrix degradation. Endocrinology. 2001;142:3033–3040. doi: 10.1210/endo.142.7.8277. PubMed DOI
Matsumoto K., Shionyu M., Go M., Shimizu K., Shinomura T., Kimata K., Watanabe H. Distinct interaction of versican/PG-M with hyaluronan and link protein. J. Biol. Chem. 2003;278:41205–41212. doi: 10.1074/jbc.M305060200. PubMed DOI
Yanagishita M., Rodbard D., Hascall V.C. Isolation and characterization of proteoglycans from porcine ovarian follicular fluid. J. Biol. Chem. 1979;254:911–920. PubMed
Yanagishita M., Hascall V.C. Biosynthesis of proteoglycans by rat granulosa cells cultured in vitro. J. Biol. Chem. 1979;254:12355–12364. PubMed