The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29346283
PubMed Central
PMC5796229
DOI
10.3390/ijms19010283
PII: ijms19010283
Knihovny.cz E-zdroje
- Klíčová slova
- extracellular matrix, hyaluronan, inter-alpha-trypsin inhibitor, oocyte-cumulus complexes, pentraxin 3, tumor necrosis factor-alpha-induced protein 6,
- MeSH
- C-reaktivní protein metabolismus MeSH
- extracelulární matrix účinky léků metabolismus MeSH
- kumulární buňky cytologie účinky léků metabolismus MeSH
- kyselina hyaluronová metabolismus MeSH
- mifepriston farmakologie MeSH
- molekuly buněčné adheze metabolismus MeSH
- oocyty cytologie metabolismus MeSH
- rozmnožování účinky léků MeSH
- sérový amyloidový protein metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- C-reaktivní protein MeSH
- kyselina hyaluronová MeSH
- mifepriston MeSH
- molekuly buněčné adheze MeSH
- PTX3 protein MeSH Prohlížeč
- sérový amyloidový protein MeSH
- Tnfaip6 protein, mouse MeSH Prohlížeč
Fertilization of the mammalian oocyte requires interactions between spermatozoa and expanded cumulus extracellular matrix (ECM) that surrounds the oocyte. This review focuses on key molecules that play an important role in the formation of the cumulus ECM, generated by the oocyte-cumulus complex. In particular, the specific inhibitors (AG1478, lapatinib, indomethacin and MG132) and progesterone receptor antagonist (RU486) exerting their effects through the remodeling of the ECM of the cumulus cells surrounding the oocyte have been described. After gonadotropin stimulus, cumulus cells expand and form hyaluronan (HA)-rich cumulus ECM. In pigs, the proper structure of the cumulus ECM depends on the interaction between HA and serum-derived proteins of the inter-alpha-trypsin inhibitor (IαI) protein family. We have demonstrated the synthesis of HA by cumulus cells, and the presence of the IαI, tumor necrosis factor-alpha-induced protein 6 and pentraxin 3 in expanding oocyte-cumulus complexes (OCC). We have evaluated the covalent linkage of heavy chains of IαI proteins to HA, as the principal component of the expanded HA-rich cumulus ECM, in porcine OCC cultured in medium with specific inhibitors: AG1478 and lapatinib (both inhibitors of epidermal growth factor receptor tyrosine kinase activity); MG132 (a specific proteasomal inhibitor), indomethacin (cyclooxygenase inhibitor); and progesterone receptor antagonist (RU486). We have found that both RU486 and indomethacin does not disrupt the formation of the covalent linkage between the heavy chains of IαI to HA in the expanded OCC. In contrast, the inhibitors AG1478 and lapatinib prevent gonadotropin-induced cumulus expansion. Finally, the formation of oocyte-cumulus ECM relying on the covalent transfer of heavy chains of IαI molecules to HA has been inhibited in the presence of MG132.
Zobrazit více v PubMed
Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI
Naba A., Clauser K.R., Hoersch S., Liu H., Carr S.A., Hynes R.O. The matrisome: In silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteomics. 2012;11 doi: 10.1074/mcp.M111.014647. PubMed DOI PMC
Hynes R.O., Naba A. Overview of the matrisome—An inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 2012;4 doi: 10.1101/cshperspect.a004903. PubMed DOI PMC
Theocharis A.D., Skandalis S.S., Tzanakakis G.N., Karamanos N.K. Proteoglycans in health and disease: Novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 2010;277:3904–3923. doi: 10.1111/j.1742-4658.2010.07800.x. PubMed DOI
Itano N., Sawai T., Yoshida M., Lenas P., Yamada Y., Imagawa M., Shinomura T., Hamaguchi M., Yoshida Y., Ohnuki Y., et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J. Biol. Chem. 1999;274:25085–25092. doi: 10.1074/jbc.274.35.25085. PubMed DOI
Jacobson A., Brinck J., Briskin M.J., Spicer A.P., Heldin P. Expression of human hyaluronan synthases in response to external stimuli. Pt 1Biochem. J. 2000;348:29–35. doi: 10.1042/bj3480029. PubMed DOI PMC
Stern R., Jedrzejas M.J. Hyaluronidases: Their genomics, structures, and mechanisms of action. Chem. Rev. 2006;106:818–839. doi: 10.1021/cr050247k. PubMed DOI PMC
Jarvelainen H., Sainio A., Koulu M., Wight T.N., Pentinen R. Extracellular matrix molecules: Potential targets in pharmacotherapy. Pharmacol. Rev. 2009;61:198–223. doi: 10.1124/pr.109.001289. PubMed DOI PMC
Bateman J.F., Boot-Handford R.P., Lamande S.R. Genetic diseases of connective tissues: Cellular and extracellular effects of ECM mutations. Nat. Rev. Gen. 2009;10:173–183. doi: 10.1038/nrg2520. PubMed DOI
Chen L., Mao S.J., McLean L.R., Powers R.W., Larsen W.J. Proteins of the inter-alpha-trypsin inhibitor family stabilize the cumulus extracellular matrix through their direct binding with hyaluronic acid. J. Biol. Chem. 1994;269:28282–28287. PubMed
Zhuo L., Yoneda M., Zhao M., Yingsung W., Yoshida N., Kitagawa Y., Kawamura K., Suzuki T., Kimata K. Defect in SHAP-hyaluronan complex causes severe female infertility. A study by inactivation of the bikunin gene in mice. J. Biol. Chem. 2001;276:7693–7696. doi: 10.1074/jbc.C000899200. PubMed DOI
Nagyova E., Camaioni A., Prochazka R., Salustri A. Covalent transfer of heavy chains of inter-alpha-trypsin inhibitor family proteins to hyaluronan in in vivo and in vitro expanded porcine oocyte-cumulus complexes. Biol. Reprod. 2004;71:1838–1843. doi: 10.1095/biolreprod.104.029595. PubMed DOI
Fulop C., Szanto S., Mukhopadhyay D., Bardos T., Kamath R.V., Rugg M.S., Day A.J., Salustri A., Hascall V.C., Glant T.T., et al. Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein 6 deficient mice. Development. 2003;130:2253–2261. doi: 10.1242/dev.00422. PubMed DOI
Suzuki M., Kobayashi H., Tanaka Y., Kanayama N., Terao T. Reproductive failure in mice lacking inter-alpha-trypsin inhibitor (ITI)-ITI target genes in mouse ovary identified by microarray analysis. J. Endocrinol. 2004;183:29–38. doi: 10.1677/joe.1.05803. PubMed DOI
Salustri A., Yanagishita M., Hascall V.C. Synthesis and accumulation of hyaluronic acid and proteoglycans in the mouse cell-oocyte complex during follicle-stimulating hormone-induced mucification. J. Biol. Chem. 1989;264:13840–13847. PubMed
Chen L., Wert S.E., Hendrix E.M., Russell P.T., Cannon M., Larsen W.J. Hyaluronic acid synthesis and gap junction endocytosis are necessary for normal expansion of the cumulus mass. Mol. Reprod. Dev. 1990;26:236–247. doi: 10.1002/mrd.1080260307. PubMed DOI
Fulop C., Salustri A., Hascall V.C. Coding sequence of a hyaluronan synthase homologue expressed during expansion of the mouse cumulus-oocyte complex. Arch. Biochem. Biophys. 1997;337:261–266. doi: 10.1006/abbi.1996.9793. PubMed DOI
Carrette O., Nemade R.V., Day A.J., Brickner A., Larsen W.J. TSG-6 is concentrated in the extracellular matrix of mouse cumulus oocyte complexes through hyaluronan and inter-alpha-inhibitor binding. Biol. Reprod. 2001;65:301–308. doi: 10.1095/biolreprod65.1.301. PubMed DOI
Nagyová E., Procházka R., Vanderhyden B.C. Ooocytectomy does not influence synthesis of hyaluronic acid by pig cumulus cells: Retention of hyaluronic acid after insulin-like growth factor-I treatment in serum free-medium. Biol. Reprod. 1999;61:569–574. doi: 10.1095/biolreprod61.3.569. PubMed DOI
Chen L., Mao S.J., Larsen W.J. Identification of a factor in foetal bovine serum that stabilizes the cumulus extracellular matrix. A role for a member of the inter-alpha-trypsin inhibitor family. J. Biol. Chem. 1992;267:12380–12386. PubMed
Chen L., Zhang H., Powers R.W., Russell P.T., Larsen W.J. Covalent linkage between proteins of the inter-a-inhibitor family and hyaluronic acid is mediated by a factor produced by granulosa cells. J. Biol. Chem. 1996;271:19409–19414. doi: 10.1074/jbc.271.32.19409. PubMed DOI
Nagyova E. Organization of the expanded cumulus-extracellular matrix in preovulatory follicles: A role for inter-alpha-trypsin inhibitor. Endocr. Regul. 2015;49:37–45. doi: 10.4149/endo_2015_01_37. PubMed DOI
Fulop C., Kamath R.V., Li Y., Otto J.M., Salustri A., Olsen B.R., Glant T.T., Hascall V.C. Coding sequence, exon-intron structure and chromosomal localization of murine TNF-stimulated gene 6 that is specifically expressed by expanding cumulus cell-oocyte complexes. Gene. 1997;202:95–102. doi: 10.1016/S0378-1119(97)00459-9. PubMed DOI
Mukhopadhyay D., Hascall V.C., Day A.J., Salustri A., Fulop C. Two distinct populations of tumor necrosis factor-stimulated gene-6 protein in the extracellular matrix of expanded mouse cumulus cell-oocyte complexes. Arch. Biochem. Biophys. 2001;394:173–181. doi: 10.1006/abbi.2001.2552. PubMed DOI
Yoshioka S., Ochsner S., Russell D.L., Ujioka T., Fujii S., Richards J.S., Espey L.L. Expression of tumor necrosis factor -stimulated gene-6 in the rat ovary in response to an ovulatory dose of gonadotropin. Endocrinology. 2000;141:4114–4119. doi: 10.1210/endo.141.11.7784. PubMed DOI
Nagyova E., Camaioni A., Prochazka R., Day A.J., Salustri A. Synthesis of tumor necrosis factor alpha-induced protein 6 in porcine preovulatory follicles: A study with A38 antibody. Biol. Reprod. 2008;78:903–909. doi: 10.1095/biolreprod.107.064832. PubMed DOI
Nagyova E., Nemcova L., Prochazka R. Expression of tumor necrosis factor alpha-induced protein 6 messenger RNA in porcine preovulatory ovarian follicles. J. Reprod. Dev. 2009;55:231–235. doi: 10.1262/jrd.20115. PubMed DOI
Sayasith K., Dore M., Sirois J. Molecular characterization of tumor necrosis alpha-induced protein 6 and its human choret alionic gonadotropin-dependent induction in theca and mural granulosa cells of equine preovulatory follicles. Reproduction. 2007;133:135–145. doi: 10.1530/rep.1.01200. PubMed DOI
Varani S., Elvin J.A., Yan C., De Mayo J., DeMayo F.J., Horton H.F., Byrne M.C., Matzuk M.M. Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol. Endocrinol. 2002;16:1154–1167. doi: 10.1210/mend.16.6.0859. PubMed DOI
Salustri A., Garlanda C., Hirsch E., De Acetis M., Taccagno A., Bottazzi B., Doni A., Bastone A., Mantovani G., Beck Peccoz P., et al. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development. 2004;131:1577–1586. doi: 10.1242/dev.01056. PubMed DOI
Scarchilli L., Camaioni A., Bottazzi B., Negri V., Doni A., Deban L., Bastone A., Salvatori G., Mantovani A., Siracusa G., et al. PTX3 interacts with inter-alpha-trypsin inhibitor: Implications for hyaluronan organization and cumulus oophorus expansion. J. Biol. Chem. 2007;282:30161–30170. doi: 10.1074/jbc.M703738200. PubMed DOI
Ievoli E., Lindstedt R., Inforzato A., Camaioni A., Palone F., Day A.J., Mantovani A., Salvatori G., Salustri A. Implications of the oligomeric state of the N-terminal PTX3 domain in cumulus matrix assembly. Matrix Biol. 2011;30:330–337. doi: 10.1016/j.matbio.2011.05.002. PubMed DOI PMC
Inforzato A., Rivieccio V., Morreale A.P., Bastone A., Salustri A., Scarchilli L., Verdoliva A., Vincenti S., Gallo G., Chiapparino C., et al. Structural characterization of PTX3 disulfide bond network and its multimeric status in cumulus matrix organization. J. Biol. Chem. 2008;283:10147–10161. doi: 10.1074/jbc.M708535200. PubMed DOI
Nagyova E., Kalous J., Nemcova L. Increased expression of pentraxin 3 after in vivo and in vitro stimulation with gonadotropins in porcine oocyte-cumulus complexes and mural granulosa cells. Domest. Anim. Endocrinol. 2016;56:29–35. doi: 10.1016/j.domaniend.2016.01.004. PubMed DOI
Mizon C., Balduyck M., Albani D., Michalski C., Burnouf T., Mizon J. Development of an enzyme-linked immunosorbent assay for human plasma inter-alpha-trypsin inhibitor (ITI) using specific antibodies against each of the H1 and H2 heavy chains. Immunol. Methods. 1996;190:61–70. doi: 10.1016/0022-1759(95)00257-X. PubMed DOI
Salier J.P., Rouet P., Raguenez G., Daveau M. The inter-a-inhibitor family: From structure to regulation. Biochem. J. 1996;315:1–9. doi: 10.1042/bj3150001. PubMed DOI PMC
Rouet P., Daveau M., Salier J.P. Electrophoretic pattern of the inter-alpha-inhibitor family proteins in human serum characterized by chain-specific antibodies. Biol. Chem. Hoppe-Seyler. 1992;373:1019–1024. doi: 10.1515/bchm3.1992.373.2.1019. PubMed DOI
Carrette O., Mizon C., Sautiere P., Sesboue R., Mizon J. Purification and characterization of pig inter-a-inhibitor and its constitutive heavy chains. Biochem. Biophys. Acta. 1997;1338:21–30. doi: 10.1016/S0167-4838(96)00184-7. PubMed DOI
Flahaut C., Capon C., Balduyck M., Ricart G., Sautiere P., Mizon J. Glycosylation pattern of human inter-alpha-inhibitor heavy chains. Pt 3Biochem. J. 1998;333:749–756. doi: 10.1042/bj3330749. PubMed DOI PMC
Milner C.M., Day A.J. TSG-6: A multifunctional protein associated with inflammation. J. Cell Sci. 2003;116:1863–1873. doi: 10.1242/jcs.00407. PubMed DOI
Day A.J., de la Motte C.A. Hyaluronan cross-linking: A protective mechanism in inflammation? Trends Immunol. 2005;28:637–643. doi: 10.1016/j.it.2005.09.009. PubMed DOI
Milner C.M., Higman V.A., Day A.J. TSG-6: A pluripotent inflammatory mediator? Biochem. Soc. Trans. 2006;34:446–450. doi: 10.1042/BST0340446. PubMed DOI
Jessen T.E., Odum L. Role of tumour necrosis factor stimulated gene 6 (TSG-6) in the coupling of inter-alpha-trypsin inhibitor to hyaluronan in human follicular fluid. Reproduction. 2003;125:27–31. doi: 10.1530/rep.0.1250027. PubMed DOI
Conti M., Hsieh M., Park J.Y., Su Y.Q. Role of the epidermal growth factor network in ovarian follicles. Mol. Endocrinol. 2006;20:715–723. doi: 10.1210/me.2005-0185. PubMed DOI
Nagyova E., Camaioni A., Scsukova S., Mlynarcikova A., Prochazka R., Nemcova L., Salustri A. Activation of Cumulus Cell SMAD2/3 and Epidermal Growth Factor Receptor Pathways Are Involved in Porcine Oocyte-Cumulus Cell Expansion and Steroidogenesis. Mol. Reprod. Dev. 2011;78:391–402. doi: 10.1002/mrd.21312. PubMed DOI
Prochazka R., Kalab P., Nagyova E. Epidermal growth factor-receptor tyrosine kinase activity regulates expansion of porcine oocyte-cumulus cell complexes in vitro. Biol. Reprod. 2003;68:797–803. doi: 10.1095/biolreprod.102.005520. PubMed DOI
Procházka R., Petlach M., Nagyová E., Nemcová L. Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro: Comparison with gonadotropins. Reproduction. 2011;141:425–435. doi: 10.1530/REP-10-0418. PubMed DOI
Yamashita Y., Kawashima I., Yanai Y., Nishibori M., Richards J.S., Shimada M. Hormone-induced expression of tumor necrosis factor alpha converting enzyme/A disintegrin and metaloprotease-17 impacts porcine cumulus cell oocyte complex expansion and meiotic maturation via ligand activation of the epidermal growth factor receptor. Endocrinology. 2007;148:6164–6175. doi: 10.1210/en.2007-0195. PubMed DOI
Wayne C.M., Fan H.Y., Cheng X., Richards J.S. Follicle-stimulating hormone induces multiple signaling cascades: Evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation. Mol. Endocrinol. 2007;21:1940–1957. doi: 10.1210/me.2007-0020. PubMed DOI
Ashkenazi H., Cao X., Motola S., Popliker M., Conti M., Tsafriri A. Epidermal growth factor family members: Endogenous mediators of the ovulatory response. Endocrinology. 2005;46:77–84. doi: 10.1210/en.2004-0588. PubMed DOI
Reizel Y., Elbaz Y., Dekel N. Sustained activity of the EGF receptor is an absolute requisite for LH-induced oocyte maturation and cumulus expansion. Mol. Endocrinol. 2010;24:402–411. doi: 10.1210/me.2009-0267. PubMed DOI PMC
Srinivasan R., Benton E., McCormick F., Thomas H., Gullick W.J. Expression of the c-erbB-3/HER-3 and c-erbB-4/HER-4 growth factor receptors and their ligands, neuregulin-1 alpha, neuregulin-1 beta, and betacellulin, in normal endometrium and endometrial cancer. Clin. Cancer Res. 1999;5:2877–2883. PubMed
Santin A.D., Bellone S., Gokden M., Palmieri M., Dunn D., Agha J. Overexpression of HER-2/neu in uterine serous papillary cancer. Clin. Cancer Res. 2002;8:1271–1279. PubMed
Yarden Y., Sliwkowski M.X. Untangling the ErbB signaling network. Nat. Rev. Mol. Cell Biol. 2001;2:127–137. doi: 10.1038/35052073. PubMed DOI
Baselga J., Arteaga C.L. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J. Clin. Oncol. 2005;23:2445–2459. doi: 10.1200/JCO.2005.11.890. PubMed DOI
Kelly H., Graham M., Humes E. Delivery of a healthy baby after first-trimester maternal exposure to lapatinib. Clin. Breast Cancer. 2006;7:339–341. doi: 10.3816/CBC.2006.n.048. PubMed DOI
Rusnak D.W., Lackey K., Affleck K., Wood E.R., Alligood K.J., Rhodes N. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther. 2001;1:85–94. PubMed
Eccles S. The epidermal growth factor receptor /Erb-B/HER family in normal and malignant breast biology. Int. J. Dev. Biol. 2011;55:685–696. doi: 10.1387/ijdb.113396se. PubMed DOI
Nagyova E., Nemcova L., Mlynarcikova A., Scsukova S., Kalous J. Lapatinib inhibits meiotic maturation of porcine oocyte-cumulus complexes cultured in vitro in gonadotropin -supplemented medium. Fertil. Steril. 2013;99:1739–1748. doi: 10.1016/j.fertnstert.2012.12.040. PubMed DOI
Lydon J.P., DeMayo F.J., Funk C.R., Mani S.K., Hughes A.R., Montgomery C.A., Jr., Shyamala G., Conneely O.M., O’Malley B.W. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9:2266–2278. doi: 10.1101/gad.9.18.2266. PubMed DOI
Faivre E.J., Daniel A.R., Hillard C.H.J., Lange C.A. Progesterone receptor rapid signaling mediates serine 345 phosphorylation and tethering to specificity protein 1 transcription factors. Mol. Endocrinol. 2008;22:823–837. doi: 10.1210/me.2007-0437. PubMed DOI PMC
Nagyova E., Scsukova S., Kalous J., Mlynarcikova A. Effect of RU486 and indomethacin on meiotic maturation, formation of extracellular matrix, and progesterone production by porcine oocyte-cumulus complexes. Domest. Anim. Endocrinol. 2014;48:7–14. doi: 10.1016/j.domaniend.2014.01.003. PubMed DOI
Shimada M., Nishibori M., Yamashita Y., Ito J., Mori T., Richards J.S. Down-regulated expression of A disintegrin and metalloproteinase with thrombospondin-like repeats-1 by progesterone receptor antagonist is associated with impaired expansion of porcine cumulus-oocyte complexes. Endocrinology. 2004;145:4603–4614. doi: 10.1210/en.2004-0542. PubMed DOI
Roh S.I., Batten B.E., Friedman C.I., Kim M.H. The effects of progesterone antagonist RU486 on mouse oocyte maturation, ovulation, fertilization, and cleavage. Am. J. Obstet. Gynecol. 1988;159:1584–1589. doi: 10.1016/0002-9378(88)90599-6. PubMed DOI
Aparicio I.M., Garcia-Herreros M., O’Shea L.C., Hensey C., Lonergan P., Fair T. Expression, regulation, and function of progesterone receptors in bovine cumulus oocyte complexes during in vitro maturation. Biol. Reprod. 2011;84:910–921. doi: 10.1095/biolreprod.110.087411. PubMed DOI
Shao R., Markström E., Friberg P.A., Johansson M., Billig H. Expression of progesterone receptor (PR) A and B isoforms in mouse granulosa cells: Stage-dependent PR-mediated regulation of apoptosis and cell proliferation. Biol. Reprod. 2003;68:914–921. doi: 10.1095/biolreprod.102.009035. PubMed DOI
Romero S., Smitz J. Epiregulin can effectively mature isolated cumulus-oocyte complexes, but fails as a substitute for the hCG/epidermal growth factor stimulus on cultured follicles. Reproduction. 2009;137:997–1005. doi: 10.1530/REP-08-0523. PubMed DOI
Sirois J. Induction of prostaglandin endoperoxide synthase-2 by human chorionic gonadotropin in bovine preovulatory follicles in vivo. Endocrinology. 1994;135:841–848. doi: 10.1210/endo.135.3.8070377. PubMed DOI
Nuttinck F., Reinaud P., Tricoire H., Vigneron C., Peynot N., Mialot J.P., Mermillod P., Charpigny G. Cyclooxygenase-2 is expressed by cumulus cells during oocyte maturation in cattle. Mol. Reprod. Dev. 2002;61:93–101. doi: 10.1002/mrd.1135. PubMed DOI
Davis B.J., Lennard D.E., Lee C.A., Tiano H.F., Morham S.G., Wetsel W.C., Langenbach R. Anovulation in cyclooxygenase-2-deficient mice is restored by prostaglandin E(2) and interleukin-1 beta. Endocrinology. 1999;140:2685–2695. doi: 10.1210/endo.140.6.6715. PubMed DOI
Lim H., Paria B.C., Das S.K., Dinchuc J.E., Langebach R., Trzaskos J.M., Dey S.K. Multiple female reproductive failures in cyclooxygenase 2- deficient mice. Cell. 1997;91:197–208. doi: 10.1016/S0092-8674(00)80402-X. PubMed DOI
Ochsner S.A., Russell D.L., Day A.J., Breyer R.M., Richards J.S. Decreased expression of tumor necrosis factor-alpha-stimulated gene 6 in cumulus cells of the cyclooxygenase-2 and EP2 null mice. Endocrinology. 2003;144:1008–1019. doi: 10.1210/en.2002-220435. PubMed DOI
Janson P.O., Brannstrom M., Holmes P.V., Sogn J. Studies on the mechanism of ovulation using the model of the isolated ovary. Ann. N. Y. Acad. Sci. 1988;541:22–29. doi: 10.1111/j.1749-6632.1988.tb22238.x. PubMed DOI
Peters M.W., Pursley J.R., Smith G.W. Inhibition of intrafollicular PGE2 synthesis and ovulation following ultrasound-mediated intrafollicular injection of the selective cyclooxygenase-2 inhibitor NS-398 in cattle. J. Anim. Sci. 2004;82:1656–1662. doi: 10.2527/2004.8261656x. PubMed DOI
Duffy D.M., VandeVoort C.A. Maturation and fertilization of non-human primate oocytes are compromised by oral administration of a COX-2 inhibitor. Fertil. Steril. 2011;95:1256–1260. doi: 10.1016/j.fertnstert.2010.12.048. PubMed DOI PMC
Eppig J.J. Prostaglandin E2 stimulates cumulus expansion and hyaluronic acid synthesis by cumuli oophori isolated from mice. Biol. Reprod. 1981;25:191–195. doi: 10.1095/biolreprod25.1.191. PubMed DOI
Matsumoto H., Ma W.G., Smalley W., Trzaskos J., Breyer R.M., Dey S.K. Diversification cyclooxygenase-2-derived prostaglandins in ovulation and implantation. Biol. Rerpod. 2001;64:1557–1565. doi: 10.1095/biolreprod64.5.1557. PubMed DOI
Ben-Ami I., Freimann S., Armon L., Dantes A., Strassburger D., Friedler S., Raziel A., Seger R., Ron-El R., Amsterdam A. PGE2 up-regulates EGF-like growth factor biosynthesis in human granulosa cells: New insights into the coordination between PGE2 and LH in ovulation. Mol. Hum. Reprod. 2006;12:593–599. doi: 10.1093/molehr/gal068. PubMed DOI
Park J.Y., Su Y.Q., Ariga M., Law E., Jin S.L., Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303:682–684. doi: 10.1126/science.1092463. PubMed DOI
Hsieh M., Lee D., Panigone S., Horner K., Chen R., Theologis A., Lee D.C., Threadgill D.W., Conti M. Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol. Cell. Biol. 2007;27:1914–1924. doi: 10.1128/MCB.01919-06. PubMed DOI PMC
Goldberg A.L., Stein R., Adams J. New insights into proteasome function: From archaebacteria to drug development. Chem. Biol. 1995;2:503–508. doi: 10.1016/1074-5521(95)90182-5. PubMed DOI
Coux O., Tanaka K., Goldberg A.L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. PubMed DOI
Josefsberg L.B., Galiani D., Dantes A., Amsterdam A., Dekel N. The proteasome is involved in the first metaphase-to-anaphase transition of meiosis in rat oocytes. Biol. Reprod. 2000;62:1270–1277. doi: 10.1095/biolreprod62.5.1270. PubMed DOI
Lee D.H., Goldberg A.L. Proteasome inhibitors: Valuable new tools for cell biologists. Trends Cell Biol. 1998;8:397–403. doi: 10.1016/S0962-8924(98)01346-4. PubMed DOI
Rock K.L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A.L. Inhibitors of the proteasome block the degradation of most cell proteins and the generetaion of peptides presented on MHC class I molecules. Cell. 1994;78:767–771. doi: 10.1016/S0092-8674(94)90462-6. PubMed DOI
Huo L.J., Fan H.Y., Liang C.G., Yu L.Z., Zhong Z.S., Chen D.Y., Sun Q.Y. Regulation of ubiquitin-proteasome pathway on pig oocyte meiotic maturation and fertilization. Biol. Reprod. 2004;71:853–862. doi: 10.1095/biolreprod.104.028134. PubMed DOI
Huo L.J., Fan H.Y., Zhong Z.S., Chen D.Y., Schatten H., Sun Q.Y. Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech. Dev. 2004;121:1275–1287. doi: 10.1016/j.mod.2004.05.007. PubMed DOI
Chmelikova E., Sedmikova M., Rajmon R., Petr J., Svestkova D., Jilek F. Effect of proteasome inhibitor MG132 on in vitro maturation of pig oocytes. Zygote. 2004;12:157–162. doi: 10.1017/S0967199404002734. PubMed DOI
Yi Y.J., Nagyova E., Manandhar G., Prochazka R., Sutovsky M., Park C.S., Sutovsky P. Proteolytic activity of the 26S proteasome is required for the meiotic resumption, germinal vesicle breakdown, and cumulus expansion of porcine cumulus-oocyte complexes matured in vitro. Biol. Reprod. 2008;78:115–126. doi: 10.1095/biolreprod.107.061366. PubMed DOI
Mailhes J.B., Hilliard C., Lowery M., London S.N. MG-132, an inhibitor of proteasomes and calpains, induced inhibition of oocyte maturation and aneuploidy in mouse oocytes. Cell Chromosom. 2002;1:2–7. doi: 10.1186/1475-9268-1-2. PubMed DOI PMC
Rugg M.S., Willis A.C., Mukhopadhyay D., Hascall V.C., Fries E., Fülöp C., Milner C.M., Day A.J. Characterization of complexes formed between TSG-6 and inter-α-inhibitor that act as intermediates in the covalent transfer of heavy chains onto hyaluronan. J. Biol. Chem. 2005;280:25674–25686. doi: 10.1074/jbc.M501332200. PubMed DOI
Nagyova E., Scsukova S., Nemcova L., Mlynarcikova A., Yi Y.-J., Sutovsky M., Sutovsky P. Inhibition of proteasomal proteolysis affects expression of extracellular matrix components and steroidogenesis in porcine oocyte-cumulus complexes. Domest. Anim. Endocrinol. 2012;42:50–62. doi: 10.1016/j.domaniend.2011.09.003. PubMed DOI
Tsafriri A., Cao X., Ashkenazi H., Motola S., Popliker M., Pomerantz S.H. Resumption of oocyte meiosis in mammals: On models, meiosis activating sterols, steroids and EGF-like factors. Mol. Cell. Endocrinol. 2005;234:37–45. doi: 10.1016/j.mce.2004.09.009. PubMed DOI
Sutovsky P., Flechon J.E., Flechon B., Motlik J., Peynot N., Chesne P., Heyman Y. Dynamic changes of gap junctions and cytoskeleton during in vitro culture of cattle oocyte cumulus complexes. Biol. Reprod. 1993;49:1277–1287. doi: 10.1095/biolreprod49.6.1277. PubMed DOI
Luciano A.M., Lodde V., Beretta M.S., Colleoni S., Lauria A., Modina S. Developmental capability of denuded bovine oocyte in co-culture system with intact cumulus-oocyte complexes; role of cumulus cells, cyclic adenosine-3′,5′-monophosphate, and glutathione. Mol. Reprod. Dev. 2005;71:389–397. doi: 10.1002/mrd.20304. PubMed DOI
Gutnisky C., Dalvit G.C., Pintos L.N., Thompson J.G., Beconi M.T., Cetica P.D. Influence of hyaluronic acid synthesis and cumulus mucification on bovine oocyte in vitro maturation, fertilization and embryo development. Reprod. Fertil. Dev. 2007;19:488–497. doi: 10.1071/RD06134. PubMed DOI
Nuttinck F., Marquant-LeGuienne B., Clement L., Reinaud P., Charpigny G., Grimard B. Expression of genes involved in prostaglandin E2 and progesterone production in bovine cumulu-oocyte complex during in vitro maturation and fertilization. Reproduction. 2008;135:593–603. doi: 10.1530/REP-07-0453. PubMed DOI
Iwamasa J., Shibata S., Tanaka N., Matsuura K., Okamura H. The relationship between ovarian progesterone and proteolytic enzyme activity during ovulation in the gonadotropin-treated immature rat. Biol. Reprod. 1992;46:309–313. doi: 10.1095/biolreprod46.2.309. PubMed DOI
Jezova M., Scsukova S., Nagyova E., Vranova J., Prochazka R., Kolena J. Effect of intraovarian factors on porcine follicular cells: Cumulus expansion, granulosa and cumulus cell progesterone production. Anim. Reprod. Sci. 2001;65:115–126. doi: 10.1016/S0378-4320(00)00219-0. PubMed DOI
Shimada M., Terada T. FSH and LH induce progesterone production and progesterone receptor synthesis in cumulus cells, a requirement for meiotic resumption in porcine oocytes. Mol. Hum. Reprod. 2002;8:612–618. doi: 10.1093/molehr/8.7.612. PubMed DOI
Granot Z., Melamed-Book N., Bahat A., Orly J. Turnover of STAR protein: Roles for the proteasome and mitochondrial proteases. Mol. Cell. Endocrinol. 2007;265–266:51–58. doi: 10.1016/j.mce.2006.12.003. PubMed DOI
Tajima K., Babich S., Yoshida Y., Dantes A., Strauss J.F., 3rd, Amsterdam A. The proteasome inhibitor MG132 promotes accumulation of the steroidogenic acute regulatory protein (star) and steroidogenesis. FEBS Lett. 2001;490:59–64. doi: 10.1016/S0014-5793(01)02138-X. PubMed DOI
Ziolkowska A., Tortorella C., Nussdorfer G.G., Rucinski M., Majchrzak M., Malendowicz L.K. Accumulation of steroidogenic acute regulatory protein mRNA, and decrease in the secretory and proliferative activity of rat adrenocortical cells in the presence of proteasome inhibitors. Int. J. Mol. Med. 2006;17:865–868. doi: 10.3892/ijmm.17.5.865. PubMed DOI
Clark B.J., Wells J., King S.R., Stocco D.M. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR) J. Biol. Chem. 1994;269:28314–28322. PubMed