Cumulus Extracellular Matrix Is an Important Part of Oocyte Microenvironment in Ovarian Follicles: Its Remodeling and Proteolytic Degradation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35008478
PubMed Central
PMC8744823
DOI
10.3390/ijms23010054
PII: ijms23010054
Knihovny.cz E-zdroje
- Klíčová slova
- extracellular matrix, hyaluronan, oocyte–cumulus complex, proteasome,
- MeSH
- buněčné mikroprostředí fyziologie MeSH
- extracelulární matrix fyziologie MeSH
- lidé MeSH
- oocyty fyziologie MeSH
- ovariální folikul fyziologie MeSH
- proteolýza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The extracellular matrix (ECM) is an essential structure with biological activities. It has been shown that the ECM influences gene expression via cytoskeletal components and the gene expression is dependent upon cell interactions with molecules and hormones. The development of ovarian follicles is a hormone dependent process. The surge in the luteinizing hormone triggers ovulatory changes in oocyte microenvironment. In this review, we discuss how proteolytic cleavage affects formation of cumulus ECM following hormonal stimulation; in particular, how the specific proteasome inhibitor MG132 affects gonadotropin-induced cytoskeletal structure, the organization of cumulus ECM, steroidogenesis, and nuclear maturation. We found that after the inhibition of proteolytic cleavage, gonadotropin-stimulated oocyte-cumulus complexes (OCCs) were without any signs of cumulus expansion; they remained compact with preserved cytoskeletal F-actin-rich transzonal projections through the oocyte investments. Concomitantly, a significant decrease was detected in progesterone secretion and in the expression of gonadotropin-stimulated cumulus expansion-related transcripts, such as HAS2 and TNFAIP6. In agreement, the covalent binding between hyaluronan and the heavy chains of serum-derived the inter-alpha-trypsin inhibitor, essential for the organization of cumulus ECM, was missing.
Zobrazit více v PubMed
Bissell M.J., Barcellos-Hoff M.H. The Influence of Extracellular Matrix on Gene Expression: Is Structure the Message? J. Cell Sci. 1987;1987((Suppl. S8)):327–343. doi: 10.1242/jcs.1987.Supplement_8.18. PubMed DOI
Spencer V.A., Xu R., Bissell M.J. Extracellular Matrix, Nuclear and Chromatin Structure, and Gene Expression in Normal Tissues and Malignant Tumors: A Work in Progress. Adv. Cancer Res. 2007;97:275–294. doi: 10.1016/S0065-230X(06)97012-2. PubMed DOI PMC
Wrenzycki C., Stinshoff H. Maturation Environment and Impact on Subsequent Developmental Competence of Bovine Oocytes. Reprod. Domest. Anim. 2013;48:38–43. doi: 10.1111/rda.12204. PubMed DOI
Bonnans C., Chou J., Werb Z. Remodelling the Extracellular Matrix in Development and Disease. Nat. Rev. Mol. Cell Biol. 2014;15:786–801. doi: 10.1038/nrm3904. PubMed DOI PMC
Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular Matrix Structure. Adv. Drug Deliv. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI
Mattioli M., Barboni B. Signal Transduction Mechanism for LH in the Cumulus–Oocyte Complex. Mol. Cell. Endocrinol. 2000;161:19–23. doi: 10.1016/S0303-7207(99)00218-X. PubMed DOI
Russell D., Salustri A. Extracellular Matrix of the Cumulus-Oocyte Complex. Semin. Reprod. Med. 2006;24:217–227. doi: 10.1055/s-2006-948551. PubMed DOI
Nagyova E. Organization of the Expanded Cumulus-Extracellular Matrix in Preovulatory Follicles: A Role for Inter-Alpha-Trypsin Inhibitor. Endocr. Regul. 2015;49:37–45. doi: 10.4149/endo_2015_01_37. PubMed DOI
Chen L., Russell P.T., Larsen W.J. Sequential Effects of Follicle-Stimulating Hormone and Luteinizing Hormone on Mouse Cumulus Expansion in Vitro. Biol. Reprod. 1994;51:290–295. doi: 10.1095/biolreprod51.2.290. PubMed DOI
Shimada M., Nishibori M., Isobe N., Kawano N., Terada T. Luteinizing Hormone Receptor Formation in Cumulus Cells Surrounding Porcine Oocytes and Its Role During Meiotic Maturation of Porcine Oocytes. Biol. Reprod. 2003;68:1142–1149. doi: 10.1095/biolreprod.102.010082. PubMed DOI
Procházka R., Nĕmcová L., Nagyová E., Scsuková S., Mlynarčíková A. Development of Functional LH Receptors on Pig Cumulus-Oocyte Complexes Cultured in Vitro by a Novel Two-Step Culture System. Mol. Reprod. Dev. 2009;76:751–761. doi: 10.1002/mrd.21039. PubMed DOI
Procházka R., Nagyová E., Brem G., Schellander K., Motlík J. Secretion of Cumulus Expansion-Enabling Factor (CEEF) in Porcine Follicles. Mol. Reprod. Dev. 1998;49:141–149. doi: 10.1002/(SICI)1098-2795(199802)49:2<141::AID-MRD5>3.0.CO;2-P. PubMed DOI
Nagyová E., Vanderhyden B.C., Procházka R. Secretion of Paracrine Factors Enabling Expansion of Cumulus Cells Is Developmentally Regulated in Pig Oocytes1. Biol. Reprod. 2000;63:1149–1156. doi: 10.1095/biolreprod63.4.1149. PubMed DOI
Ježová M., Scsuková S., Nagyová E., Vranová J., Procházka R., Kolena J. Effect of Intraovarian Factors on Porcine Follicular Cells: Cumulus Expansion, Granulosa and Cumulus Cell Progesterone Production. Anim. Reprod. Sci. 2001;65:115–126. doi: 10.1016/S0378-4320(00)00219-0. PubMed DOI
Vanderhyden B.C., Armstrong D.T. Role of Cumulus Cells and Serum on the In Vitro Maturation, Fertilization, and Subsequent Development of Rat Oocytes1. Biol. Reprod. 1989;40:720–728. doi: 10.1095/biolreprod40.4.720. PubMed DOI
Ferré P., Bui T.M.T., Wakai T., Funahashi H. Effect of Removing Cumulus Cells from Porcine Cumulus-Oocyte Complexes Derived from Small and Medium Follicles during IVM on the Apoptotic Status and Meiotic Progression of the Oocytes. Theriogenology. 2016;86:1705–1710. doi: 10.1016/j.theriogenology.2016.05.024. PubMed DOI
Chen J., Torcia S., Xie F., Lin C.-J., Cakmak H., Franciosi F., Horner K., Onodera C., Song J.S., Cedars M.I., et al. Somatic Cells Regulate Maternal MRNA Translation and Developmental Competence of Mouse Oocytes. Nat. Cell Biol. 2013;15:1415–1423. doi: 10.1038/ncb2873. PubMed DOI PMC
Camaioni A., Hascall V.C., Yanagishita M., Salustri A. Effects of Exogenous Hyaluronic Acid and Serum on Matrix Organization and Stability in the Mouse Cumulus Cell-Oocyte Complex. J. Biol. Chem. 1993;268:20473–20481. doi: 10.1016/S0021-9258(20)80750-9. PubMed DOI
Nagyová E., Procházka R., Vanderhyden B.C. Oocytectomy Does Not Influence Synthesis of Hyaluronic Acid by Pig Cumulus Cells: Retention of Hyaluronic Acid After Insulin-Like Growth Factor-I Treatment in Serum-Free Medium1. Biol. Reprod. 1999;61:569–574. doi: 10.1095/biolreprod61.3.569. PubMed DOI
Hascall V.C., Wang A., Tammi M., Oikari S., Tammi R., Passi A., Vigetti D., Hanson R.W., Hart G.W. The Dynamic Metabolism of Hyaluronan Regulates the Cytosolic Concentration of UDP-GlcNAc. Matrix Biol. 2014;35:14–17. doi: 10.1016/j.matbio.2014.01.014. PubMed DOI PMC
Zhuo L., Hascall V.C., Kimata K. Inter-α-Trypsin Inhibitor, a Covalent Protein-Glycosaminoglycan-Protein Complex. J. Biol. Chem. 2004;279:38079–38082. doi: 10.1074/jbc.R300039200. PubMed DOI
Nagyova E. The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction. Int. J. Mol. Sci. 2018;19:283. doi: 10.3390/ijms19010283. PubMed DOI PMC
Richards J.S. Ovulation: New Factors That Prepare the Oocyte for Fertilization. Mol. Cell. Endocrinol. 2005;234:75–79. doi: 10.1016/j.mce.2005.01.004. PubMed DOI
Nagyova E., Camaioni A., Prochazka R., Salustri A. Covalent Transfer of Heavy Chains of Inter-α-Trypsin Inhibitor Family Proteins to Hyaluronan in In Vivo and In Vitro Expanded Porcine Oocyte-Cumulus Complexes. Biol. Reprod. 2004;71:1838–1843. doi: 10.1095/biolreprod.104.029595. PubMed DOI
Nagyova E., Scsukova S., Nemcova L., Mlynarcikova A., Yi Y.J., Sutovsky M., Sutovsky P. Inhibition of Proteasomal Proteolysis Affects Expression of Extracellular Matrix Components and Steroidogenesis in Porcine Oocyte-Cumulus Complexes. Domest. Anim. Endocrinol. 2012;42:50–62. doi: 10.1016/j.domaniend.2011.09.003. PubMed DOI
Němcová L., Nagyová E., Petlach M., Tománek M., Procházka R. Molecular Mechanisms of Insulin-Like Growth Factor 1 Promoted Synthesis and Retention of Hyaluronic Acid in Porcine Oocyte-Cumulus Complexes. Biol. Reprod. 2007;76:1016–1024. doi: 10.1095/biolreprod.106.057927. PubMed DOI
Nagyova E., Camaioni A., Prochazka R., Day A.J., Salustri A. Synthesis of Tumor Necrosis Factor Alpha-Induced Protein 6 in Porcine Preovulatory Follicles: A Study with A38 Antibody. Biol. Reprod. 2008;78:903–909. doi: 10.1095/biolreprod.107.064832. PubMed DOI
Nagyova E., Nemcova L., Prochazka R. Expression of Tumor Necrosis Factor Alpha-Induced Protein 6 Messenger RNA in Porcine Preovulatory Ovarian Follicles. J. Reprod. Dev. 2009;55:231–235. doi: 10.1262/jrd.20115. PubMed DOI
Nagyova E., Kalous J., Nemcova L. Increased Expression of Pentraxin 3 after In Vivo and In Vitro Stimulation with Gonadotropins in Porcine Oocyte-Cumulus Complexes and Granulosa Cells. Domest. Anim. Endocrinol. 2016;56:29–35. doi: 10.1016/j.domaniend.2016.01.004. PubMed DOI
Nagyova E., Salustri A., Nemcova L., Scsukova S., Kalous J., Camaioni A. Versican G1 Fragment Establishes a Strongly Stabilized Interaction with Hyaluronan-Rich Expanding Matrix during Oocyte Maturation. Int. J. Mol. Sci. 2020;21:2267. doi: 10.3390/ijms21072267. PubMed DOI PMC
Chen L., Mao S.J., Larsen W.J. Identification of a Factor in Fetal Bovine Serum That Stabilizes the Cumulus Extracellular Matrix. A Role for a Member of the Inter-Alpha-Trypsin Inhibitor Family. J. Biol. Chem. 1992;267:12380–12386. doi: 10.1016/S0021-9258(19)49851-7. PubMed DOI
Leibfried-Rutledge M.L. Effects of Fetal Calf Serum and Bovine Serum Albumin on in Vitro Maturation and Fertilization of Bovine and Hamster Cumulus-Oocyte Complexes. Biol. Reprod. 1986;35:850–857. doi: 10.1095/biolreprod35.4.850. PubMed DOI
Gjorevski N., Nelson C.M. Bidirectional Extracellular Matrix Signaling during Tissue Morphogenesis. Cytokine Growth Factor Rev. 2009;20:459–465. doi: 10.1016/j.cytogfr.2009.10.013. PubMed DOI PMC
Chen L., Zhang H., Powers R.W., Russell P.T., Larsen W.J. Covalent Linkage between Proteins of the Inter-α-Inhibitor Family and Hyaluronic Acid Is Mediated by a Factor Produced by Granulosa Cells. J. Biol. Chem. 1996;271:19409–19414. doi: 10.1074/jbc.271.32.19409. PubMed DOI
Zhuo L., Kimata K. Cumulus Oophorus Extracellular Matrix: Its Construction and Regulation. Cell Struct. Funct. 2001;26:189–196. doi: 10.1247/csf.26.189. PubMed DOI
Tsafriri A., Reich R. Molecular Aspects of Mammalian Ovulation. Exp. Clin. Endocrinol. Diabetes. 2009;107:1–11. doi: 10.1055/s-0029-1212066. PubMed DOI
Yi Y.-J., Nagyova E., Manandhar G., Procházka R., Sutovsky M., Park C.-S., Sutovsky P. Proteolytic Activity of the 26S Proteasome Is Required for the Meiotic Resumption, Germinal Vesicle Breakdown, and Cumulus Expansion of Porcine Cumulus-Oocyte Complexes Matured In Vitro. Biol. Reprod. 2008;78:115–126. doi: 10.1095/biolreprod.107.061366. PubMed DOI
Skandalis S.S., Aletras A.J., Gialeli C., Theocharis A.D., Afratis N., Tzanakakis G.N., Karamanos N.K. Targeting the Tumor Proteasome as a Mechanism to Control the Synthesis and Bioactivity of Matrix Macromolecules. Curr. Mol. Med. 2012;12:1068–1082. doi: 10.2174/156652412802480943. PubMed DOI
Goldberg A.L., Stein R., Adams J. New Insights into Proteasome Function: From Archaebacteria to Drug Development. Chem. Biol. 1995;2:503–508. doi: 10.1016/1074-5521(95)90182-5. PubMed DOI
Coux O., Tanaka K., Goldberg A.L. Structure and Functions of the 20S and 26S Proteasomes. Annu. Rev. Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. PubMed DOI
Lee D.H., Goldberg A.L. Proteasome Inhibitors: Valuable New Tools for Cell Biologists. Trends Cell Biol. 1998;8:397–403. doi: 10.1016/S0962-8924(98)01346-4. PubMed DOI
Rock K.L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A.L. Inhibitors of the Proteasome Block the Degradation of Most Cell Proteins and the Generation of Peptides Presented on MHC Class I Molecules. Cell. 1994;78:761–771. doi: 10.1016/S0092-8674(94)90462-6. PubMed DOI
Šutovský P., Fléchon J.E., Fléchon B., Motlik J., Peynot N., Chesné P., Heyman Y. Dynamic Changes of Gap Junctions and Cytoskeleton during in Vitro Culture of Cattle Oocyte Cumulus Complexes. Biol. Reprod. 1993;49:1277–1287. doi: 10.1095/biolreprod49.6.1277. PubMed DOI
Tsafriri A., Cao X., Ashkenazi H., Motola S., Popliker M., Pomerantz S.H. Resumption of Oocyte Meiosis in Mammals: On Models, Meiosis Activating Sterols, Steroids and EGF-like Factors. Mol. Cell. Endocrinol. 2005;234:37–45. doi: 10.1016/j.mce.2004.09.009. PubMed DOI
Josefsberg L.B.-Y., Galiani D., Dantes A., Amsterdam A., Dekel N. The Proteasome Is Involved in the First Metaphase-to-Anaphase Transition of Meiosis in Rat Oocytes. Biol. Reprod. 2000;62:1270–1277. doi: 10.1095/biolreprod62.5.1270. PubMed DOI
Huo L.-J., Fan H.-Y., Zhong Z.-S., Chen D.-Y., Schatten H., Sun Q.-Y. Ubiquitin–Proteasome Pathway Modulates Mouse Oocyte Meiotic Maturation and Fertilization via Regulation of MAPK Cascade and Cyclin B1 Degradation. Mech. Dev. 2004;121:1275–1287. doi: 10.1016/j.mod.2004.05.007. PubMed DOI
Chmelíková E., Sedmíková M., Rajmon R., Petr J., Švestková D., Jílek F. Effect of Proteasome Inhibitor MG132 on In Vitro Maturation of Pig Oocytes. Zygote. 2004;12:157–162. doi: 10.1017/S0967199404002734. PubMed DOI
Mailhes J.B., Hilliard C., Lowery M., London S.N. MG-132, an Inhibitor of Proteasomes and Calpains, Induced Inhibition of Oocyte Maturation and Aneuploidy in Mouse Oocytes. Cell Chromosom. 2002;1:2. doi: 10.1186/1475-9268-1-2. PubMed DOI PMC
Day A.J., de la Motte C.A. Hyaluronan Cross-Linking: A Protective Mechanism in Inflammation? Trends Immunol. 2005;26:637–643. doi: 10.1016/j.it.2005.09.009. PubMed DOI
Fülöp C., Kamath R.V., Li Y., Otto J.M., Salustri A., Olsen B.R., Glant T.T., Hascall V.C. Coding Sequence, Exon–Intron Structure and Chromosomal Localization of Murine TNF-Stimulated Gene 6 That Is Specifically Expressed by Expanding Cumulus Cell–Oocyte Complexes. Gene. 1997;202:95–102. doi: 10.1016/S0378-1119(97)00459-9. PubMed DOI
Mukhopadhyay D., Hascall V.C., Day A.J., Salustri A., Fülöp C. Two Distinct Populations of Tumor Necrosis Factor-Stimulated Gene-6 Protein in the Extracellular Matrix of Expanded Mouse Cumulus Cell–Oocyte Complexes. Arch. Biochem. Biophys. 2001;394:173–181. doi: 10.1006/abbi.2001.2552. PubMed DOI
Yoshioka S., Ochsner S., Russell D.L., Ujioka T., Fujii S., Richards J.S., Espey L.L. Expression of Tumor Necrosis Factor-Stimulated Gene-6 in the Rat Ovary in Response to an Ovulatory Dose of Gonadotropin. Endocrinology. 2000;141:4114–4119. doi: 10.1210/endo.141.11.7784. PubMed DOI
Salustri A., Garlanda C., Hirsch E., De Acetis M., Maccagno A., Bottazzi B., Doni A., Bastone A., Mantovani G., Peccoz P.B., et al. PTX3 Plays a Key Role in the Organization of the Cumulus Oophorus Extracellular Matrix and in in Vivo Fertilization. Development. 2004;131:1577–1586. doi: 10.1242/dev.01056. PubMed DOI
Russell D.L., Doyle K.M.H., Ochsner S.A., Sandy J.D., Richards J.S. Processing and Localization of ADAMTS-1 and Proteolytic Cleavage of Versican during Cumulus Matrix Expansion and Ovulation. J. Biol. Chem. 2003;278:42330–42339. doi: 10.1074/jbc.M300519200. PubMed DOI
Fülöp C., Salustri A., Hascall V.C. Coding Sequence of a Hyaluronan Synthase Homologue Expressed during Expansion of the Mouse Cumulus–Oocyte Complex. Arch. Biochem. Biophys. 1997;337:261–266. doi: 10.1006/abbi.1996.9793. PubMed DOI
Rose K.W.J., Taye N., Karoulias S.Z., Hubmacher D. Regulation of ADAMTS Proteases. Front. Mol. Biosci. 2021;8:701959. doi: 10.3389/fmolb.2021.701959. PubMed DOI PMC
McArthur M.E., Irving-Rodgers H.F., Byers S., Rodgers R.J. Identification and Immunolocalization of Decorin, Versican, Perlecan, Nidogen, and Chondroitin Sulfate Proteoglycans in Bovine Small-Antral Ovarian Follicles1. Biol. Reprod. 2000;63:913–924. doi: 10.1095/biolreprod63.3.913. PubMed DOI
Rodgers R.J., Irving-Rodgers H.F. Formation of the Ovarian Follicular Antrum and Follicular Fluid. Biol. Reprod. 2010;82:1021–1029. doi: 10.1095/biolreprod.109.082941. PubMed DOI
Foulcer S.J., Day A.J., Apte S.S. Isolation and Purification of Versican and Analysis of Versican Proteolysis. Methods Mol. Biol. 2015;1229:587–604. doi: 10.1007/978-1-4939-1714-3_46. PubMed DOI PMC
Ito K., Shinomura T., Zako M., Ujita M., Kimata K. Multiple Forms of Mouse PG-M, a Large Chondroitin Sulfate Proteoglycan Generated by Alternative Splicing. J. Biol. Chem. 1995;270:958–965. doi: 10.1074/jbc.270.2.958. PubMed DOI
Schmalfeldt M., Dours-Zimmermann M.T., Winterhalter K.H., Zimmermann D.R. Versican V2 Is a Major Extracellular Matrix Component of the Mature Bovine Brain. J. Biol. Chem. 1998;273:15758–15764. doi: 10.1074/jbc.273.25.15758. PubMed DOI
Kresse H., Schönherr E. Proteoglycans of the Extracellular Matrix and Growth Control: Extracellular Matrix and Growth Control. J. Cell Physiol. 2001;189:266–274. doi: 10.1002/jcp.10030. PubMed DOI
Wight T.N. Versican: A Versatile Extracellular Matrix Proteoglycan in Cell Biology. Curr. Opin. Cell Biol. 2002;14:617–623. doi: 10.1016/S0955-0674(02)00375-7. PubMed DOI
Lemire J.M., Merrilees M.J., Braun K.R., Wight T.N. Overexpression of the V3 Variant of Versican Alters Arterial Smooth Muscle Cell Adhesion, Migration, and Proliferation in Vitro. J. Cell Physiol. 2002;190:38–45. doi: 10.1002/jcp.10043. PubMed DOI
Sandy J.D., Westling J., Kenagy R.D., Iruela-Arispe M.L., Verscharen C., Rodriguez-Mazaneque J.C., Zimmermann D.R., Lemire J.M., Fischer J.W., Wight T.N., et al. Versican V1 Proteolysis in Human Aorta In Vivo Occurs at the Glu441-Ala442 Bond, a Site That Is Cleaved by Recombinant ADAMTS-1 and ADAMTS-4. J. Biol. Chem. 2001;276:13372–13378. doi: 10.1074/jbc.M009737200. PubMed DOI
Wight T.N. Provisional Matrix: A Role for Versican and Hyaluronan. Matrix Biol. 2017;60–61:38–56. doi: 10.1016/j.matbio.2016.12.001. PubMed DOI PMC
Murasawa Y., Nakamura H., Watanabe K., Kanoh H., Koyama E., Fujii S., Kimata K., Zako M., Yoneda M., Isogai Z. The Versican G1 Fragment and Serum-Derived Hyaluronan-Associated Proteins Interact and Form a Complex in Granulation Tissue of Pressure Ulcers. Am. J. Pathol. 2018;188:432–449. doi: 10.1016/j.ajpath.2017.10.015. PubMed DOI
Toole B.P., Wight T.N., Tammi M.I. Hyaluronan-Cell Interactions in Cancer and Vascular Disease. J. Biol. Chem. 2002;277:4593–4596. doi: 10.1074/jbc.R100039200. PubMed DOI
D’Alessandris C., Canipari R., Di Giacomo M., Epifano O., Camaioni A., Siracusa G., Salustri A. Control of Mouse Cumulus Cell-Oocyte Complex Integrity before and after Ovulation: Plasminogen Activator Synthesis and Matrix Degradation. Endocrinol. 2001;142:3033–3040. doi: 10.1210/endo.142.7.8277. PubMed DOI
Doyle K.M.H., Russell D.L., Sriraman V., Richards J.S. Coordinate Transcription of the ADAMTS-1 Gene by Luteinizing Hormone and Progesterone Receptor. Mol. Endocrinol. 2004;18:2463–2478. doi: 10.1210/me.2003-0380. PubMed DOI
Russell D.L., Ochsner S.A., Hsieh M., Mulders S., Richards J.S. Hormone-Regulated Expression and Localization of Versican in the Rodent Ovary. Endocrinol. 2003;144:1020–1031. doi: 10.1210/en.2002-220434. PubMed DOI
Shimada M., Nishibori M., Yamashita Y., Ito J., Mori T., Richards J.S. Down-Regulated Expression of A Disintegrin and Metalloproteinase with Thrombospondin-Like Repeats-1 by Progesterone Receptor Antagonist Is Associated with Impaired Expansion of Porcine Cumulus-Oocyte Complexes. Endocrinol. 2004;145:4603–4614. doi: 10.1210/en.2004-0542. PubMed DOI
Robker R.L., Russell D.L., Espey L.L., Lydon J.P., O’Malley B.W., Richards J.S. Progesterone-Regulated Genes in the Ovulation Process: ADAMTS-1 and Cathepsin L Proteases. Proc. Natl. Acad. Sci. USA. 2000;97:4689–4694. doi: 10.1073/pnas.080073497. PubMed DOI PMC
Lydon J.P., DeMayo F.J., Funk C.R., Mani S.K., Hughes A.R., Montgomery C.A., Shyamala G., Conneely O.M., O’Malley B.W. Mice Lacking Progesterone Receptor Exhibit Pleiotropic Reproductive Abnormalities. Genes Dev. 1995;9:2266–2278. doi: 10.1101/gad.9.18.2266. PubMed DOI
Shindo T., Kurihara H., Kuno K., Yokoyama H., Wada T., Kurihara Y., Imai T., Wang Y., Ogata M., Nishimatsu H., et al. ADAMTS-1: A Metalloproteinase-Disintegrin Essential for Normal Growth, Fertility, and Organ Morphology and Function. J. Clin. Investig. 2000;105:1345–1352. doi: 10.1172/JCI8635. PubMed DOI PMC
Tsafriri A., Motola S. Are Steroids Dispensable for Meiotic Resumption in Mammals? Trends Endocrinol. Metab. 2007;18:321–327. doi: 10.1016/j.tem.2007.08.005. PubMed DOI
Miller W.L., Auchus R.J. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocr. Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013. PubMed DOI PMC
Gutnisky C., Dalvit G.C., Pintos L.N., Thompson J.G., Beconi M.T., Cetica P.D. Influence of Hyaluronic Acid Synthesis and Cumulus Mucification on Bovine Oocyte in Vitro Maturation, Fertilisation and Embryo Development. Reprod. Fertil. Dev. 2007;19:488. doi: 10.1071/RD06134. PubMed DOI
Nuttinck F., Guienne B.M.-L., Clément L., Reinaud P., Charpigny G., Grimard B. Expression of Genes Involved in Prostaglandin E2 and Progesterone Production in Bovine Cumulus–Oocyte Complexes during in Vitro Maturation and Fertilization. Reproduction. 2008;135:593–603. doi: 10.1530/REP-07-0453. PubMed DOI
Shimada M., Terada T. FSH and LH Induce Progesterone Production and Progesterone Receptor Synthesis in Cumulus Cells: A Requirement for Meiotic Resumption in Porcine Oocytes. Mol. Hum. Reprod. 2002;8:612–618. doi: 10.1093/molehr/8.7.612. PubMed DOI
Iwamasa J., Shibata S., Tanaka N., Matsuura K., Okamura H. The Relationship between Ovarian Progesterone and Proteolytic Enzyme Activity during Ovulation in the Gonadotropin-Treated Immature Rat. Biol. Reprod. 1992;46:309–313. doi: 10.1095/biolreprod46.2.309. PubMed DOI
Clark B.J., Wells J., King S.R., Stocco D.M. The Purification, Cloning, and Expression of a Novel Luteinizing Hormone-Induced Mitochondrial Protein in MA-10 Mouse Leydig Tumor Cells. Characterization of the Steroidogenic Acute Regulatory Protein (StAR) J. Biol. Chem. 1994;269:28314–28322. doi: 10.1016/S0021-9258(18)46930-X. PubMed DOI
Granot Z., Melamed-Book N., Bahat A., Orly J. Turnover of StAR Protein: Roles for the Proteasome and Mitochondrial Proteases. Mol. Cell. Endocrinol. 2007;265–266:51–58. doi: 10.1016/j.mce.2006.12.003. PubMed DOI
Tajima K., Babich S., Yoshida Y., Dantes A., Strauss J.F., Amsterdam A. The Proteasome Inhibitor MG132 Promotes Accumulation of the Steroidogenic Acute Regulatory Protein (StAR) and Steroidogenesis. FEBS Lett. 2001;490:59–64. doi: 10.1016/S0014-5793(01)02138-X. PubMed DOI
Ziolkowska A., Tortorella C., Nussdorfer G.G., Rucinski M., Majchrzak M., Malendowicz L.K. Accumulation of Steroidogenic Acute Regulatory Protein MRNA, and Decrease in the Secretory and Proliferative Activity of Rat Adrenocortical Cells in the Presence of Proteasome Inhibitors. Int. J. Mol. Med. 2006;17:865–868. doi: 10.3892/ijmm.17.5.865. PubMed DOI
Ogiwara K., Takahashi T. Nuclear Progestin Receptor Phosphorylation by Cdk9 Is Required for the Expression of Mmp15, a Protease Indispensable for Ovulation in Medaka. Cells. 2019;8:215. doi: 10.3390/cells8030215. PubMed DOI PMC
Sakai N., Iwamatsu T., Yamauchi K., Nagahama Y. Development of the Steroidogenic Capacity of Medaka (Oryzias latipes) Ovarian Follicles during Vitellogenesis and Oocyte Maturation. Gen. Comp. Endocrinol. 1987;66:333–342. doi: 10.1016/0016-6480(87)90242-5. PubMed DOI
Fukada S., Sakai N., Adachi S., Nagahama Y. Steroidogenesis in the Ovarian Follicle of Medaka (Oryzias latipes, a Daily Spawner) during Oocyte Maturation. (Oocyte Maturation/Maturation-Inducing Hormone/17 Alpha,20beta-Dihydroxy-4-Pregnen-3-One/Medaka/Teleost) Dev. Growth Differ. 1994;36:81–88. doi: 10.1111/j.1440-169X.1994.00081.x. PubMed DOI
Nagahama Y., Yamashita M. Regulation of Oocyte Maturation in Fish: Regulation of Oocyte Maturation in Fish. Dev. Growth Differ. 2008;50:S195–S219. doi: 10.1111/j.1440-169X.2008.01019.x. PubMed DOI
Ogiwara K., Takahashi T. Involvement of the Nuclear Progestin Receptor in LH-Induced Expression of Membrane Type 2-Matrix Metalloproteinase Required for Follicle Rupture during Ovulation in the Medaka, Oryzias latipes. Mol. Cell. Endocrinol. 2017;450:54–63. doi: 10.1016/j.mce.2017.04.016. PubMed DOI
Lange C.A., Shen T., Horwitz K.B. Phosphorylation of Human Progesterone Receptors at Serine-294 by Mitogen-Activated Protein Kinase Signals Their Degradation by the 26S Proteasome. Proc. Natl. Acad. Sci. USA. 2000;97:1032–1037. doi: 10.1073/pnas.97.3.1032. PubMed DOI PMC
Abdel-Hafiz H.A., Horwitz K.B. Post-Translational Modifications of the Progesterone Receptors. J. Steroid Biochem. Mol. Biol. 2014;140:80–89. doi: 10.1016/j.jsbmb.2013.12.008. PubMed DOI PMC
Imhof M.O., McDonnell D.P. Yeast RSP5 and Its Human Homolog HRPF1 Potentiate Hormone-Dependent Activation of Transcription by Human Progesterone and Glucocorticoid Receptors. Mol. Cell. Biol. 1996;16:2594–2605. doi: 10.1128/MCB.16.6.2594. PubMed DOI PMC
Nawaz Z., Lonard D.M., Smith C.L., Lev-Lehman E., Tsai S.Y., Tsai M.-J., O’Malley B.W. The Angelman Syndrome-Associated Protein, E6-AP, Is a Coactivator for the Nuclear Hormone Receptor Superfamily. Mol. Cell. Biol. 1999;19:1182–1189. doi: 10.1128/MCB.19.2.1182. PubMed DOI PMC
Verma S., Ismail A., Gao X., Fu G., Li X., O’Malley B.W., Nawaz Z. The Ubiquitin-Conjugating Enzyme UBCH7 Acts as a Coactivator for Steroid Hormone Receptors. Mol. Cell. Biol. 2004;24:8716–8726. doi: 10.1128/MCB.24.19.8716-8726.2004. PubMed DOI PMC
Dennis A.P., Lonard D.M., Nawaz Z., O’Malley B.W. Inhibition of the 26S Proteasome Blocks Progesterone Receptor-Dependent Transcription through Failed Recruitment of RNA Polymerase II. J. Steroid Biochem. Mol. Biol. 2005;94:337–346. doi: 10.1016/j.jsbmb.2004.11.009. PubMed DOI
Frantz C., Stewart K.M., Weaver V.M. The Extracellular Matrix at a Glance. J. Cell Sci. 2010;123:4195–4200. doi: 10.1242/jcs.023820. PubMed DOI PMC
Heldin C.-H., Lennartsson J., Westermark B. Involvement of Platelet-Derived Growth Factor Ligands and Receptors in Tumorigenesis. J. Intern. Med. 2018;283:16–44. doi: 10.1111/joim.12690. PubMed DOI
Kan F.W.K. High-Resolution Localization of Hyaluronic Acid in the Golden Hamster Oocyte-Cumulus Complex by Use of a Hyaluronidase-Gold Complex. Anat. Rec. 1990;228:370–382. doi: 10.1002/ar.1092280403. PubMed DOI
Evanko S.P., Wight T.N. Intracellular Localization of Hyaluronan in Proliferating Cells. J. Histochem. Cytochem. 1999;47:1331–1341. doi: 10.1177/002215549904701013. PubMed DOI
Li H., You L., Tian Y., Guo J., Fang X., Zhou C., Shi L., Su Y. DPAGT1-Mediated Protein N-Glycosylation Is Indispensable for Oocyte and Follicle Development in Mice. Adv. Sci. 2020;7:2000531. doi: 10.1002/advs.202000531. PubMed DOI PMC