Cumulus Extracellular Matrix Is an Important Part of Oocyte Microenvironment in Ovarian Follicles: Its Remodeling and Proteolytic Degradation

. 2021 Dec 21 ; 23 (1) : . [epub] 20211221

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35008478

The extracellular matrix (ECM) is an essential structure with biological activities. It has been shown that the ECM influences gene expression via cytoskeletal components and the gene expression is dependent upon cell interactions with molecules and hormones. The development of ovarian follicles is a hormone dependent process. The surge in the luteinizing hormone triggers ovulatory changes in oocyte microenvironment. In this review, we discuss how proteolytic cleavage affects formation of cumulus ECM following hormonal stimulation; in particular, how the specific proteasome inhibitor MG132 affects gonadotropin-induced cytoskeletal structure, the organization of cumulus ECM, steroidogenesis, and nuclear maturation. We found that after the inhibition of proteolytic cleavage, gonadotropin-stimulated oocyte-cumulus complexes (OCCs) were without any signs of cumulus expansion; they remained compact with preserved cytoskeletal F-actin-rich transzonal projections through the oocyte investments. Concomitantly, a significant decrease was detected in progesterone secretion and in the expression of gonadotropin-stimulated cumulus expansion-related transcripts, such as HAS2 and TNFAIP6. In agreement, the covalent binding between hyaluronan and the heavy chains of serum-derived the inter-alpha-trypsin inhibitor, essential for the organization of cumulus ECM, was missing.

Zobrazit více v PubMed

Bissell M.J., Barcellos-Hoff M.H. The Influence of Extracellular Matrix on Gene Expression: Is Structure the Message? J. Cell Sci. 1987;1987((Suppl. S8)):327–343. doi: 10.1242/jcs.1987.Supplement_8.18. PubMed DOI

Spencer V.A., Xu R., Bissell M.J. Extracellular Matrix, Nuclear and Chromatin Structure, and Gene Expression in Normal Tissues and Malignant Tumors: A Work in Progress. Adv. Cancer Res. 2007;97:275–294. doi: 10.1016/S0065-230X(06)97012-2. PubMed DOI PMC

Wrenzycki C., Stinshoff H. Maturation Environment and Impact on Subsequent Developmental Competence of Bovine Oocytes. Reprod. Domest. Anim. 2013;48:38–43. doi: 10.1111/rda.12204. PubMed DOI

Bonnans C., Chou J., Werb Z. Remodelling the Extracellular Matrix in Development and Disease. Nat. Rev. Mol. Cell Biol. 2014;15:786–801. doi: 10.1038/nrm3904. PubMed DOI PMC

Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular Matrix Structure. Adv. Drug Deliv. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI

Mattioli M., Barboni B. Signal Transduction Mechanism for LH in the Cumulus–Oocyte Complex. Mol. Cell. Endocrinol. 2000;161:19–23. doi: 10.1016/S0303-7207(99)00218-X. PubMed DOI

Russell D., Salustri A. Extracellular Matrix of the Cumulus-Oocyte Complex. Semin. Reprod. Med. 2006;24:217–227. doi: 10.1055/s-2006-948551. PubMed DOI

Nagyova E. Organization of the Expanded Cumulus-Extracellular Matrix in Preovulatory Follicles: A Role for Inter-Alpha-Trypsin Inhibitor. Endocr. Regul. 2015;49:37–45. doi: 10.4149/endo_2015_01_37. PubMed DOI

Chen L., Russell P.T., Larsen W.J. Sequential Effects of Follicle-Stimulating Hormone and Luteinizing Hormone on Mouse Cumulus Expansion in Vitro. Biol. Reprod. 1994;51:290–295. doi: 10.1095/biolreprod51.2.290. PubMed DOI

Shimada M., Nishibori M., Isobe N., Kawano N., Terada T. Luteinizing Hormone Receptor Formation in Cumulus Cells Surrounding Porcine Oocytes and Its Role During Meiotic Maturation of Porcine Oocytes. Biol. Reprod. 2003;68:1142–1149. doi: 10.1095/biolreprod.102.010082. PubMed DOI

Procházka R., Nĕmcová L., Nagyová E., Scsuková S., Mlynarčíková A. Development of Functional LH Receptors on Pig Cumulus-Oocyte Complexes Cultured in Vitro by a Novel Two-Step Culture System. Mol. Reprod. Dev. 2009;76:751–761. doi: 10.1002/mrd.21039. PubMed DOI

Procházka R., Nagyová E., Brem G., Schellander K., Motlík J. Secretion of Cumulus Expansion-Enabling Factor (CEEF) in Porcine Follicles. Mol. Reprod. Dev. 1998;49:141–149. doi: 10.1002/(SICI)1098-2795(199802)49:2<141::AID-MRD5>3.0.CO;2-P. PubMed DOI

Nagyová E., Vanderhyden B.C., Procházka R. Secretion of Paracrine Factors Enabling Expansion of Cumulus Cells Is Developmentally Regulated in Pig Oocytes1. Biol. Reprod. 2000;63:1149–1156. doi: 10.1095/biolreprod63.4.1149. PubMed DOI

Ježová M., Scsuková S., Nagyová E., Vranová J., Procházka R., Kolena J. Effect of Intraovarian Factors on Porcine Follicular Cells: Cumulus Expansion, Granulosa and Cumulus Cell Progesterone Production. Anim. Reprod. Sci. 2001;65:115–126. doi: 10.1016/S0378-4320(00)00219-0. PubMed DOI

Vanderhyden B.C., Armstrong D.T. Role of Cumulus Cells and Serum on the In Vitro Maturation, Fertilization, and Subsequent Development of Rat Oocytes1. Biol. Reprod. 1989;40:720–728. doi: 10.1095/biolreprod40.4.720. PubMed DOI

Ferré P., Bui T.M.T., Wakai T., Funahashi H. Effect of Removing Cumulus Cells from Porcine Cumulus-Oocyte Complexes Derived from Small and Medium Follicles during IVM on the Apoptotic Status and Meiotic Progression of the Oocytes. Theriogenology. 2016;86:1705–1710. doi: 10.1016/j.theriogenology.2016.05.024. PubMed DOI

Chen J., Torcia S., Xie F., Lin C.-J., Cakmak H., Franciosi F., Horner K., Onodera C., Song J.S., Cedars M.I., et al. Somatic Cells Regulate Maternal MRNA Translation and Developmental Competence of Mouse Oocytes. Nat. Cell Biol. 2013;15:1415–1423. doi: 10.1038/ncb2873. PubMed DOI PMC

Camaioni A., Hascall V.C., Yanagishita M., Salustri A. Effects of Exogenous Hyaluronic Acid and Serum on Matrix Organization and Stability in the Mouse Cumulus Cell-Oocyte Complex. J. Biol. Chem. 1993;268:20473–20481. doi: 10.1016/S0021-9258(20)80750-9. PubMed DOI

Nagyová E., Procházka R., Vanderhyden B.C. Oocytectomy Does Not Influence Synthesis of Hyaluronic Acid by Pig Cumulus Cells: Retention of Hyaluronic Acid After Insulin-Like Growth Factor-I Treatment in Serum-Free Medium1. Biol. Reprod. 1999;61:569–574. doi: 10.1095/biolreprod61.3.569. PubMed DOI

Hascall V.C., Wang A., Tammi M., Oikari S., Tammi R., Passi A., Vigetti D., Hanson R.W., Hart G.W. The Dynamic Metabolism of Hyaluronan Regulates the Cytosolic Concentration of UDP-GlcNAc. Matrix Biol. 2014;35:14–17. doi: 10.1016/j.matbio.2014.01.014. PubMed DOI PMC

Zhuo L., Hascall V.C., Kimata K. Inter-α-Trypsin Inhibitor, a Covalent Protein-Glycosaminoglycan-Protein Complex. J. Biol. Chem. 2004;279:38079–38082. doi: 10.1074/jbc.R300039200. PubMed DOI

Nagyova E. The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction. Int. J. Mol. Sci. 2018;19:283. doi: 10.3390/ijms19010283. PubMed DOI PMC

Richards J.S. Ovulation: New Factors That Prepare the Oocyte for Fertilization. Mol. Cell. Endocrinol. 2005;234:75–79. doi: 10.1016/j.mce.2005.01.004. PubMed DOI

Nagyova E., Camaioni A., Prochazka R., Salustri A. Covalent Transfer of Heavy Chains of Inter-α-Trypsin Inhibitor Family Proteins to Hyaluronan in In Vivo and In Vitro Expanded Porcine Oocyte-Cumulus Complexes. Biol. Reprod. 2004;71:1838–1843. doi: 10.1095/biolreprod.104.029595. PubMed DOI

Nagyova E., Scsukova S., Nemcova L., Mlynarcikova A., Yi Y.J., Sutovsky M., Sutovsky P. Inhibition of Proteasomal Proteolysis Affects Expression of Extracellular Matrix Components and Steroidogenesis in Porcine Oocyte-Cumulus Complexes. Domest. Anim. Endocrinol. 2012;42:50–62. doi: 10.1016/j.domaniend.2011.09.003. PubMed DOI

Němcová L., Nagyová E., Petlach M., Tománek M., Procházka R. Molecular Mechanisms of Insulin-Like Growth Factor 1 Promoted Synthesis and Retention of Hyaluronic Acid in Porcine Oocyte-Cumulus Complexes. Biol. Reprod. 2007;76:1016–1024. doi: 10.1095/biolreprod.106.057927. PubMed DOI

Nagyova E., Camaioni A., Prochazka R., Day A.J., Salustri A. Synthesis of Tumor Necrosis Factor Alpha-Induced Protein 6 in Porcine Preovulatory Follicles: A Study with A38 Antibody. Biol. Reprod. 2008;78:903–909. doi: 10.1095/biolreprod.107.064832. PubMed DOI

Nagyova E., Nemcova L., Prochazka R. Expression of Tumor Necrosis Factor Alpha-Induced Protein 6 Messenger RNA in Porcine Preovulatory Ovarian Follicles. J. Reprod. Dev. 2009;55:231–235. doi: 10.1262/jrd.20115. PubMed DOI

Nagyova E., Kalous J., Nemcova L. Increased Expression of Pentraxin 3 after In Vivo and In Vitro Stimulation with Gonadotropins in Porcine Oocyte-Cumulus Complexes and Granulosa Cells. Domest. Anim. Endocrinol. 2016;56:29–35. doi: 10.1016/j.domaniend.2016.01.004. PubMed DOI

Nagyova E., Salustri A., Nemcova L., Scsukova S., Kalous J., Camaioni A. Versican G1 Fragment Establishes a Strongly Stabilized Interaction with Hyaluronan-Rich Expanding Matrix during Oocyte Maturation. Int. J. Mol. Sci. 2020;21:2267. doi: 10.3390/ijms21072267. PubMed DOI PMC

Chen L., Mao S.J., Larsen W.J. Identification of a Factor in Fetal Bovine Serum That Stabilizes the Cumulus Extracellular Matrix. A Role for a Member of the Inter-Alpha-Trypsin Inhibitor Family. J. Biol. Chem. 1992;267:12380–12386. doi: 10.1016/S0021-9258(19)49851-7. PubMed DOI

Leibfried-Rutledge M.L. Effects of Fetal Calf Serum and Bovine Serum Albumin on in Vitro Maturation and Fertilization of Bovine and Hamster Cumulus-Oocyte Complexes. Biol. Reprod. 1986;35:850–857. doi: 10.1095/biolreprod35.4.850. PubMed DOI

Gjorevski N., Nelson C.M. Bidirectional Extracellular Matrix Signaling during Tissue Morphogenesis. Cytokine Growth Factor Rev. 2009;20:459–465. doi: 10.1016/j.cytogfr.2009.10.013. PubMed DOI PMC

Chen L., Zhang H., Powers R.W., Russell P.T., Larsen W.J. Covalent Linkage between Proteins of the Inter-α-Inhibitor Family and Hyaluronic Acid Is Mediated by a Factor Produced by Granulosa Cells. J. Biol. Chem. 1996;271:19409–19414. doi: 10.1074/jbc.271.32.19409. PubMed DOI

Zhuo L., Kimata K. Cumulus Oophorus Extracellular Matrix: Its Construction and Regulation. Cell Struct. Funct. 2001;26:189–196. doi: 10.1247/csf.26.189. PubMed DOI

Tsafriri A., Reich R. Molecular Aspects of Mammalian Ovulation. Exp. Clin. Endocrinol. Diabetes. 2009;107:1–11. doi: 10.1055/s-0029-1212066. PubMed DOI

Yi Y.-J., Nagyova E., Manandhar G., Procházka R., Sutovsky M., Park C.-S., Sutovsky P. Proteolytic Activity of the 26S Proteasome Is Required for the Meiotic Resumption, Germinal Vesicle Breakdown, and Cumulus Expansion of Porcine Cumulus-Oocyte Complexes Matured In Vitro. Biol. Reprod. 2008;78:115–126. doi: 10.1095/biolreprod.107.061366. PubMed DOI

Skandalis S.S., Aletras A.J., Gialeli C., Theocharis A.D., Afratis N., Tzanakakis G.N., Karamanos N.K. Targeting the Tumor Proteasome as a Mechanism to Control the Synthesis and Bioactivity of Matrix Macromolecules. Curr. Mol. Med. 2012;12:1068–1082. doi: 10.2174/156652412802480943. PubMed DOI

Goldberg A.L., Stein R., Adams J. New Insights into Proteasome Function: From Archaebacteria to Drug Development. Chem. Biol. 1995;2:503–508. doi: 10.1016/1074-5521(95)90182-5. PubMed DOI

Coux O., Tanaka K., Goldberg A.L. Structure and Functions of the 20S and 26S Proteasomes. Annu. Rev. Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. PubMed DOI

Lee D.H., Goldberg A.L. Proteasome Inhibitors: Valuable New Tools for Cell Biologists. Trends Cell Biol. 1998;8:397–403. doi: 10.1016/S0962-8924(98)01346-4. PubMed DOI

Rock K.L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A.L. Inhibitors of the Proteasome Block the Degradation of Most Cell Proteins and the Generation of Peptides Presented on MHC Class I Molecules. Cell. 1994;78:761–771. doi: 10.1016/S0092-8674(94)90462-6. PubMed DOI

Šutovský P., Fléchon J.E., Fléchon B., Motlik J., Peynot N., Chesné P., Heyman Y. Dynamic Changes of Gap Junctions and Cytoskeleton during in Vitro Culture of Cattle Oocyte Cumulus Complexes. Biol. Reprod. 1993;49:1277–1287. doi: 10.1095/biolreprod49.6.1277. PubMed DOI

Tsafriri A., Cao X., Ashkenazi H., Motola S., Popliker M., Pomerantz S.H. Resumption of Oocyte Meiosis in Mammals: On Models, Meiosis Activating Sterols, Steroids and EGF-like Factors. Mol. Cell. Endocrinol. 2005;234:37–45. doi: 10.1016/j.mce.2004.09.009. PubMed DOI

Josefsberg L.B.-Y., Galiani D., Dantes A., Amsterdam A., Dekel N. The Proteasome Is Involved in the First Metaphase-to-Anaphase Transition of Meiosis in Rat Oocytes. Biol. Reprod. 2000;62:1270–1277. doi: 10.1095/biolreprod62.5.1270. PubMed DOI

Huo L.-J., Fan H.-Y., Zhong Z.-S., Chen D.-Y., Schatten H., Sun Q.-Y. Ubiquitin–Proteasome Pathway Modulates Mouse Oocyte Meiotic Maturation and Fertilization via Regulation of MAPK Cascade and Cyclin B1 Degradation. Mech. Dev. 2004;121:1275–1287. doi: 10.1016/j.mod.2004.05.007. PubMed DOI

Chmelíková E., Sedmíková M., Rajmon R., Petr J., Švestková D., Jílek F. Effect of Proteasome Inhibitor MG132 on In Vitro Maturation of Pig Oocytes. Zygote. 2004;12:157–162. doi: 10.1017/S0967199404002734. PubMed DOI

Mailhes J.B., Hilliard C., Lowery M., London S.N. MG-132, an Inhibitor of Proteasomes and Calpains, Induced Inhibition of Oocyte Maturation and Aneuploidy in Mouse Oocytes. Cell Chromosom. 2002;1:2. doi: 10.1186/1475-9268-1-2. PubMed DOI PMC

Day A.J., de la Motte C.A. Hyaluronan Cross-Linking: A Protective Mechanism in Inflammation? Trends Immunol. 2005;26:637–643. doi: 10.1016/j.it.2005.09.009. PubMed DOI

Fülöp C., Kamath R.V., Li Y., Otto J.M., Salustri A., Olsen B.R., Glant T.T., Hascall V.C. Coding Sequence, Exon–Intron Structure and Chromosomal Localization of Murine TNF-Stimulated Gene 6 That Is Specifically Expressed by Expanding Cumulus Cell–Oocyte Complexes. Gene. 1997;202:95–102. doi: 10.1016/S0378-1119(97)00459-9. PubMed DOI

Mukhopadhyay D., Hascall V.C., Day A.J., Salustri A., Fülöp C. Two Distinct Populations of Tumor Necrosis Factor-Stimulated Gene-6 Protein in the Extracellular Matrix of Expanded Mouse Cumulus Cell–Oocyte Complexes. Arch. Biochem. Biophys. 2001;394:173–181. doi: 10.1006/abbi.2001.2552. PubMed DOI

Yoshioka S., Ochsner S., Russell D.L., Ujioka T., Fujii S., Richards J.S., Espey L.L. Expression of Tumor Necrosis Factor-Stimulated Gene-6 in the Rat Ovary in Response to an Ovulatory Dose of Gonadotropin. Endocrinology. 2000;141:4114–4119. doi: 10.1210/endo.141.11.7784. PubMed DOI

Salustri A., Garlanda C., Hirsch E., De Acetis M., Maccagno A., Bottazzi B., Doni A., Bastone A., Mantovani G., Peccoz P.B., et al. PTX3 Plays a Key Role in the Organization of the Cumulus Oophorus Extracellular Matrix and in in Vivo Fertilization. Development. 2004;131:1577–1586. doi: 10.1242/dev.01056. PubMed DOI

Russell D.L., Doyle K.M.H., Ochsner S.A., Sandy J.D., Richards J.S. Processing and Localization of ADAMTS-1 and Proteolytic Cleavage of Versican during Cumulus Matrix Expansion and Ovulation. J. Biol. Chem. 2003;278:42330–42339. doi: 10.1074/jbc.M300519200. PubMed DOI

Fülöp C., Salustri A., Hascall V.C. Coding Sequence of a Hyaluronan Synthase Homologue Expressed during Expansion of the Mouse Cumulus–Oocyte Complex. Arch. Biochem. Biophys. 1997;337:261–266. doi: 10.1006/abbi.1996.9793. PubMed DOI

Rose K.W.J., Taye N., Karoulias S.Z., Hubmacher D. Regulation of ADAMTS Proteases. Front. Mol. Biosci. 2021;8:701959. doi: 10.3389/fmolb.2021.701959. PubMed DOI PMC

McArthur M.E., Irving-Rodgers H.F., Byers S., Rodgers R.J. Identification and Immunolocalization of Decorin, Versican, Perlecan, Nidogen, and Chondroitin Sulfate Proteoglycans in Bovine Small-Antral Ovarian Follicles1. Biol. Reprod. 2000;63:913–924. doi: 10.1095/biolreprod63.3.913. PubMed DOI

Rodgers R.J., Irving-Rodgers H.F. Formation of the Ovarian Follicular Antrum and Follicular Fluid. Biol. Reprod. 2010;82:1021–1029. doi: 10.1095/biolreprod.109.082941. PubMed DOI

Foulcer S.J., Day A.J., Apte S.S. Isolation and Purification of Versican and Analysis of Versican Proteolysis. Methods Mol. Biol. 2015;1229:587–604. doi: 10.1007/978-1-4939-1714-3_46. PubMed DOI PMC

Ito K., Shinomura T., Zako M., Ujita M., Kimata K. Multiple Forms of Mouse PG-M, a Large Chondroitin Sulfate Proteoglycan Generated by Alternative Splicing. J. Biol. Chem. 1995;270:958–965. doi: 10.1074/jbc.270.2.958. PubMed DOI

Schmalfeldt M., Dours-Zimmermann M.T., Winterhalter K.H., Zimmermann D.R. Versican V2 Is a Major Extracellular Matrix Component of the Mature Bovine Brain. J. Biol. Chem. 1998;273:15758–15764. doi: 10.1074/jbc.273.25.15758. PubMed DOI

Kresse H., Schönherr E. Proteoglycans of the Extracellular Matrix and Growth Control: Extracellular Matrix and Growth Control. J. Cell Physiol. 2001;189:266–274. doi: 10.1002/jcp.10030. PubMed DOI

Wight T.N. Versican: A Versatile Extracellular Matrix Proteoglycan in Cell Biology. Curr. Opin. Cell Biol. 2002;14:617–623. doi: 10.1016/S0955-0674(02)00375-7. PubMed DOI

Lemire J.M., Merrilees M.J., Braun K.R., Wight T.N. Overexpression of the V3 Variant of Versican Alters Arterial Smooth Muscle Cell Adhesion, Migration, and Proliferation in Vitro. J. Cell Physiol. 2002;190:38–45. doi: 10.1002/jcp.10043. PubMed DOI

Sandy J.D., Westling J., Kenagy R.D., Iruela-Arispe M.L., Verscharen C., Rodriguez-Mazaneque J.C., Zimmermann D.R., Lemire J.M., Fischer J.W., Wight T.N., et al. Versican V1 Proteolysis in Human Aorta In Vivo Occurs at the Glu441-Ala442 Bond, a Site That Is Cleaved by Recombinant ADAMTS-1 and ADAMTS-4. J. Biol. Chem. 2001;276:13372–13378. doi: 10.1074/jbc.M009737200. PubMed DOI

Wight T.N. Provisional Matrix: A Role for Versican and Hyaluronan. Matrix Biol. 2017;60–61:38–56. doi: 10.1016/j.matbio.2016.12.001. PubMed DOI PMC

Murasawa Y., Nakamura H., Watanabe K., Kanoh H., Koyama E., Fujii S., Kimata K., Zako M., Yoneda M., Isogai Z. The Versican G1 Fragment and Serum-Derived Hyaluronan-Associated Proteins Interact and Form a Complex in Granulation Tissue of Pressure Ulcers. Am. J. Pathol. 2018;188:432–449. doi: 10.1016/j.ajpath.2017.10.015. PubMed DOI

Toole B.P., Wight T.N., Tammi M.I. Hyaluronan-Cell Interactions in Cancer and Vascular Disease. J. Biol. Chem. 2002;277:4593–4596. doi: 10.1074/jbc.R100039200. PubMed DOI

D’Alessandris C., Canipari R., Di Giacomo M., Epifano O., Camaioni A., Siracusa G., Salustri A. Control of Mouse Cumulus Cell-Oocyte Complex Integrity before and after Ovulation: Plasminogen Activator Synthesis and Matrix Degradation. Endocrinol. 2001;142:3033–3040. doi: 10.1210/endo.142.7.8277. PubMed DOI

Doyle K.M.H., Russell D.L., Sriraman V., Richards J.S. Coordinate Transcription of the ADAMTS-1 Gene by Luteinizing Hormone and Progesterone Receptor. Mol. Endocrinol. 2004;18:2463–2478. doi: 10.1210/me.2003-0380. PubMed DOI

Russell D.L., Ochsner S.A., Hsieh M., Mulders S., Richards J.S. Hormone-Regulated Expression and Localization of Versican in the Rodent Ovary. Endocrinol. 2003;144:1020–1031. doi: 10.1210/en.2002-220434. PubMed DOI

Shimada M., Nishibori M., Yamashita Y., Ito J., Mori T., Richards J.S. Down-Regulated Expression of A Disintegrin and Metalloproteinase with Thrombospondin-Like Repeats-1 by Progesterone Receptor Antagonist Is Associated with Impaired Expansion of Porcine Cumulus-Oocyte Complexes. Endocrinol. 2004;145:4603–4614. doi: 10.1210/en.2004-0542. PubMed DOI

Robker R.L., Russell D.L., Espey L.L., Lydon J.P., O’Malley B.W., Richards J.S. Progesterone-Regulated Genes in the Ovulation Process: ADAMTS-1 and Cathepsin L Proteases. Proc. Natl. Acad. Sci. USA. 2000;97:4689–4694. doi: 10.1073/pnas.080073497. PubMed DOI PMC

Lydon J.P., DeMayo F.J., Funk C.R., Mani S.K., Hughes A.R., Montgomery C.A., Shyamala G., Conneely O.M., O’Malley B.W. Mice Lacking Progesterone Receptor Exhibit Pleiotropic Reproductive Abnormalities. Genes Dev. 1995;9:2266–2278. doi: 10.1101/gad.9.18.2266. PubMed DOI

Shindo T., Kurihara H., Kuno K., Yokoyama H., Wada T., Kurihara Y., Imai T., Wang Y., Ogata M., Nishimatsu H., et al. ADAMTS-1: A Metalloproteinase-Disintegrin Essential for Normal Growth, Fertility, and Organ Morphology and Function. J. Clin. Investig. 2000;105:1345–1352. doi: 10.1172/JCI8635. PubMed DOI PMC

Tsafriri A., Motola S. Are Steroids Dispensable for Meiotic Resumption in Mammals? Trends Endocrinol. Metab. 2007;18:321–327. doi: 10.1016/j.tem.2007.08.005. PubMed DOI

Miller W.L., Auchus R.J. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocr. Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013. PubMed DOI PMC

Gutnisky C., Dalvit G.C., Pintos L.N., Thompson J.G., Beconi M.T., Cetica P.D. Influence of Hyaluronic Acid Synthesis and Cumulus Mucification on Bovine Oocyte in Vitro Maturation, Fertilisation and Embryo Development. Reprod. Fertil. Dev. 2007;19:488. doi: 10.1071/RD06134. PubMed DOI

Nuttinck F., Guienne B.M.-L., Clément L., Reinaud P., Charpigny G., Grimard B. Expression of Genes Involved in Prostaglandin E2 and Progesterone Production in Bovine Cumulus–Oocyte Complexes during in Vitro Maturation and Fertilization. Reproduction. 2008;135:593–603. doi: 10.1530/REP-07-0453. PubMed DOI

Shimada M., Terada T. FSH and LH Induce Progesterone Production and Progesterone Receptor Synthesis in Cumulus Cells: A Requirement for Meiotic Resumption in Porcine Oocytes. Mol. Hum. Reprod. 2002;8:612–618. doi: 10.1093/molehr/8.7.612. PubMed DOI

Iwamasa J., Shibata S., Tanaka N., Matsuura K., Okamura H. The Relationship between Ovarian Progesterone and Proteolytic Enzyme Activity during Ovulation in the Gonadotropin-Treated Immature Rat. Biol. Reprod. 1992;46:309–313. doi: 10.1095/biolreprod46.2.309. PubMed DOI

Clark B.J., Wells J., King S.R., Stocco D.M. The Purification, Cloning, and Expression of a Novel Luteinizing Hormone-Induced Mitochondrial Protein in MA-10 Mouse Leydig Tumor Cells. Characterization of the Steroidogenic Acute Regulatory Protein (StAR) J. Biol. Chem. 1994;269:28314–28322. doi: 10.1016/S0021-9258(18)46930-X. PubMed DOI

Granot Z., Melamed-Book N., Bahat A., Orly J. Turnover of StAR Protein: Roles for the Proteasome and Mitochondrial Proteases. Mol. Cell. Endocrinol. 2007;265–266:51–58. doi: 10.1016/j.mce.2006.12.003. PubMed DOI

Tajima K., Babich S., Yoshida Y., Dantes A., Strauss J.F., Amsterdam A. The Proteasome Inhibitor MG132 Promotes Accumulation of the Steroidogenic Acute Regulatory Protein (StAR) and Steroidogenesis. FEBS Lett. 2001;490:59–64. doi: 10.1016/S0014-5793(01)02138-X. PubMed DOI

Ziolkowska A., Tortorella C., Nussdorfer G.G., Rucinski M., Majchrzak M., Malendowicz L.K. Accumulation of Steroidogenic Acute Regulatory Protein MRNA, and Decrease in the Secretory and Proliferative Activity of Rat Adrenocortical Cells in the Presence of Proteasome Inhibitors. Int. J. Mol. Med. 2006;17:865–868. doi: 10.3892/ijmm.17.5.865. PubMed DOI

Ogiwara K., Takahashi T. Nuclear Progestin Receptor Phosphorylation by Cdk9 Is Required for the Expression of Mmp15, a Protease Indispensable for Ovulation in Medaka. Cells. 2019;8:215. doi: 10.3390/cells8030215. PubMed DOI PMC

Sakai N., Iwamatsu T., Yamauchi K., Nagahama Y. Development of the Steroidogenic Capacity of Medaka (Oryzias latipes) Ovarian Follicles during Vitellogenesis and Oocyte Maturation. Gen. Comp. Endocrinol. 1987;66:333–342. doi: 10.1016/0016-6480(87)90242-5. PubMed DOI

Fukada S., Sakai N., Adachi S., Nagahama Y. Steroidogenesis in the Ovarian Follicle of Medaka (Oryzias latipes, a Daily Spawner) during Oocyte Maturation. (Oocyte Maturation/Maturation-Inducing Hormone/17 Alpha,20beta-Dihydroxy-4-Pregnen-3-One/Medaka/Teleost) Dev. Growth Differ. 1994;36:81–88. doi: 10.1111/j.1440-169X.1994.00081.x. PubMed DOI

Nagahama Y., Yamashita M. Regulation of Oocyte Maturation in Fish: Regulation of Oocyte Maturation in Fish. Dev. Growth Differ. 2008;50:S195–S219. doi: 10.1111/j.1440-169X.2008.01019.x. PubMed DOI

Ogiwara K., Takahashi T. Involvement of the Nuclear Progestin Receptor in LH-Induced Expression of Membrane Type 2-Matrix Metalloproteinase Required for Follicle Rupture during Ovulation in the Medaka, Oryzias latipes. Mol. Cell. Endocrinol. 2017;450:54–63. doi: 10.1016/j.mce.2017.04.016. PubMed DOI

Lange C.A., Shen T., Horwitz K.B. Phosphorylation of Human Progesterone Receptors at Serine-294 by Mitogen-Activated Protein Kinase Signals Their Degradation by the 26S Proteasome. Proc. Natl. Acad. Sci. USA. 2000;97:1032–1037. doi: 10.1073/pnas.97.3.1032. PubMed DOI PMC

Abdel-Hafiz H.A., Horwitz K.B. Post-Translational Modifications of the Progesterone Receptors. J. Steroid Biochem. Mol. Biol. 2014;140:80–89. doi: 10.1016/j.jsbmb.2013.12.008. PubMed DOI PMC

Imhof M.O., McDonnell D.P. Yeast RSP5 and Its Human Homolog HRPF1 Potentiate Hormone-Dependent Activation of Transcription by Human Progesterone and Glucocorticoid Receptors. Mol. Cell. Biol. 1996;16:2594–2605. doi: 10.1128/MCB.16.6.2594. PubMed DOI PMC

Nawaz Z., Lonard D.M., Smith C.L., Lev-Lehman E., Tsai S.Y., Tsai M.-J., O’Malley B.W. The Angelman Syndrome-Associated Protein, E6-AP, Is a Coactivator for the Nuclear Hormone Receptor Superfamily. Mol. Cell. Biol. 1999;19:1182–1189. doi: 10.1128/MCB.19.2.1182. PubMed DOI PMC

Verma S., Ismail A., Gao X., Fu G., Li X., O’Malley B.W., Nawaz Z. The Ubiquitin-Conjugating Enzyme UBCH7 Acts as a Coactivator for Steroid Hormone Receptors. Mol. Cell. Biol. 2004;24:8716–8726. doi: 10.1128/MCB.24.19.8716-8726.2004. PubMed DOI PMC

Dennis A.P., Lonard D.M., Nawaz Z., O’Malley B.W. Inhibition of the 26S Proteasome Blocks Progesterone Receptor-Dependent Transcription through Failed Recruitment of RNA Polymerase II. J. Steroid Biochem. Mol. Biol. 2005;94:337–346. doi: 10.1016/j.jsbmb.2004.11.009. PubMed DOI

Frantz C., Stewart K.M., Weaver V.M. The Extracellular Matrix at a Glance. J. Cell Sci. 2010;123:4195–4200. doi: 10.1242/jcs.023820. PubMed DOI PMC

Heldin C.-H., Lennartsson J., Westermark B. Involvement of Platelet-Derived Growth Factor Ligands and Receptors in Tumorigenesis. J. Intern. Med. 2018;283:16–44. doi: 10.1111/joim.12690. PubMed DOI

Kan F.W.K. High-Resolution Localization of Hyaluronic Acid in the Golden Hamster Oocyte-Cumulus Complex by Use of a Hyaluronidase-Gold Complex. Anat. Rec. 1990;228:370–382. doi: 10.1002/ar.1092280403. PubMed DOI

Evanko S.P., Wight T.N. Intracellular Localization of Hyaluronan in Proliferating Cells. J. Histochem. Cytochem. 1999;47:1331–1341. doi: 10.1177/002215549904701013. PubMed DOI

Li H., You L., Tian Y., Guo J., Fang X., Zhou C., Shi L., Su Y. DPAGT1-Mediated Protein N-Glycosylation Is Indispensable for Oocyte and Follicle Development in Mice. Adv. Sci. 2020;7:2000531. doi: 10.1002/advs.202000531. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...