• Je něco špatně v tomto záznamu ?

Directionality of developing skeletal muscles is set by mechanical forces

K. Sunadome, AG. Erickson, D. Kah, B. Fabry, C. Adori, P. Kameneva, L. Faure, S. Kanatani, M. Kaucka, I. Dehnisch Ellström, M. Tesarova, T. Zikmund, J. Kaiser, S. Edwards, K. Maki, T. Adachi, T. Yamamoto, K. Fried, I. Adameyko

. 2023 ; 14 (1) : 3060. [pub] 20230527

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/bmc23011366

Grantová podpora
F32 DE029662 NIDCR NIH HHS - United States

Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23011366
003      
CZ-PrNML
005      
20230801133012.0
007      
ta
008      
230718s2023 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41467-023-38647-7 $2 doi
035    __
$a (PubMed)37244931
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Sunadome, Kazunori $u Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
245    10
$a Directionality of developing skeletal muscles is set by mechanical forces / $c K. Sunadome, AG. Erickson, D. Kah, B. Fabry, C. Adori, P. Kameneva, L. Faure, S. Kanatani, M. Kaucka, I. Dehnisch Ellström, M. Tesarova, T. Zikmund, J. Kaiser, S. Edwards, K. Maki, T. Adachi, T. Yamamoto, K. Fried, I. Adameyko
520    9_
$a Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.
650    _2
$a zvířata $7 D000818
650    _2
$a myši $7 D051379
650    12
$a dánio pruhované $x genetika $7 D015027
650    12
$a kosterní svaly $x fyziologie $7 D018482
650    _2
$a myofibrily $x fyziologie $7 D009210
650    _2
$a morfogeneze $7 D009024
650    _2
$a myoblasty $x fyziologie $7 D032446
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
700    1_
$a Erickson, Alek G $u Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
700    1_
$a Kah, Delf $u Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany $1 https://orcid.org/0000000238002461
700    1_
$a Fabry, Ben $u Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany $1 https://orcid.org/0000000317370465
700    1_
$a Adori, Csaba $u Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden $u Department of Molecular Biosciences, Wenner Gren Institute, Stockholm University, 10691, Stockholm, Sweden
700    1_
$a Kameneva, Polina $u Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
700    1_
$a Faure, Louis $u Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria $1 https://orcid.org/000000034621586X
700    1_
$a Kanatani, Shigeaki $u Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177, Stockholm, Sweden $1 https://orcid.org/0000000322264288
700    1_
$a Kaucka, Marketa $u Max Planck Institute for Evolutionary Biology, August-Thienemann-Str.2, 24306, Plön, Germany $1 https://orcid.org/0000000287819769
700    1_
$a Dehnisch Ellström, Ivar $u Spinalis Foundation, 169 70, Solna, Sweden
700    1_
$a Tesarova, Marketa $u Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/0000000252007365
700    1_
$a Zikmund, Tomas $u Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/0000000329485198
700    1_
$a Kaiser, Jozef $u Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/000000027397125X
700    1_
$a Edwards, Steven $u KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
700    1_
$a Maki, Koichiro $u Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
700    1_
$a Adachi, Taiji $u Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan $1 https://orcid.org/0000000152804156
700    1_
$a Yamamoto, Takuya $u Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan $u Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
700    1_
$a Fried, Kaj $u Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden. kaj.fried@ki.se $1 https://orcid.org/0000000299977078
700    1_
$a Adameyko, Igor $u Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden. igor.adameyko@ki.se $u Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria. igor.adameyko@ki.se $1 https://orcid.org/0000000154710356
773    0_
$w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 14, č. 1 (2023), s. 3060
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37244931 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230718 $b ABA008
991    __
$a 20230801133009 $b ABA008
999    __
$a ok $b bmc $g 1963656 $s 1197631
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 14 $c 1 $d 3060 $e 20230527 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
GRA    __
$a F32 DE029662 $p NIDCR NIH HHS $2 United States
LZP    __
$a Pubmed-20230718

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...