-
Je něco špatně v tomto záznamu ?
Directionality of developing skeletal muscles is set by mechanical forces
K. Sunadome, AG. Erickson, D. Kah, B. Fabry, C. Adori, P. Kameneva, L. Faure, S. Kanatani, M. Kaucka, I. Dehnisch Ellström, M. Tesarova, T. Zikmund, J. Kaiser, S. Edwards, K. Maki, T. Adachi, T. Yamamoto, K. Fried, I. Adameyko
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
F32 DE029662
NIDCR NIH HHS - United States
NLK
Directory of Open Access Journals
od 2015
Free Medical Journals
od 2010
Nature Open Access
od 2010-12-01
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2010-01-01
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
Medline Complete (EBSCOhost)
od 2012-11-01
Health & Medicine (ProQuest)
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
Springer Nature OA/Free Journals
od 2010-12-01
- MeSH
- dánio pruhované * genetika MeSH
- kosterní svaly * fyziologie MeSH
- morfogeneze MeSH
- myoblasty fyziologie MeSH
- myofibrily fyziologie MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.
Center for iPS Cell Research and Application Kyoto University Kyoto 606 8507 Japan
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Neuroscience Karolinska Institutet 17177 Stockholm Sweden
Department of Physics University of Erlangen Nuremberg 91052 Erlangen Germany
Department of Physiology and Pharmacology Karolinska Institutet 17177 Stockholm Sweden
Institute for the Advanced Study of Human Biology Kyoto University Kyoto 606 8501 Japan
KTH Royal Institute of Technology SE 100 44 Stockholm Sweden
Max Planck Institute for Evolutionary Biology August Thienemann Str 2 24306 Plön Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23011366
- 003
- CZ-PrNML
- 005
- 20230801133012.0
- 007
- ta
- 008
- 230718s2023 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-023-38647-7 $2 doi
- 035 __
- $a (PubMed)37244931
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Sunadome, Kazunori $u Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
- 245 10
- $a Directionality of developing skeletal muscles is set by mechanical forces / $c K. Sunadome, AG. Erickson, D. Kah, B. Fabry, C. Adori, P. Kameneva, L. Faure, S. Kanatani, M. Kaucka, I. Dehnisch Ellström, M. Tesarova, T. Zikmund, J. Kaiser, S. Edwards, K. Maki, T. Adachi, T. Yamamoto, K. Fried, I. Adameyko
- 520 9_
- $a Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a myši $7 D051379
- 650 12
- $a dánio pruhované $x genetika $7 D015027
- 650 12
- $a kosterní svaly $x fyziologie $7 D018482
- 650 _2
- $a myofibrily $x fyziologie $7 D009210
- 650 _2
- $a morfogeneze $7 D009024
- 650 _2
- $a myoblasty $x fyziologie $7 D032446
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 700 1_
- $a Erickson, Alek G $u Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
- 700 1_
- $a Kah, Delf $u Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany $1 https://orcid.org/0000000238002461
- 700 1_
- $a Fabry, Ben $u Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany $1 https://orcid.org/0000000317370465
- 700 1_
- $a Adori, Csaba $u Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden $u Department of Molecular Biosciences, Wenner Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- 700 1_
- $a Kameneva, Polina $u Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
- 700 1_
- $a Faure, Louis $u Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria $1 https://orcid.org/000000034621586X
- 700 1_
- $a Kanatani, Shigeaki $u Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177, Stockholm, Sweden $1 https://orcid.org/0000000322264288
- 700 1_
- $a Kaucka, Marketa $u Max Planck Institute for Evolutionary Biology, August-Thienemann-Str.2, 24306, Plön, Germany $1 https://orcid.org/0000000287819769
- 700 1_
- $a Dehnisch Ellström, Ivar $u Spinalis Foundation, 169 70, Solna, Sweden
- 700 1_
- $a Tesarova, Marketa $u Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/0000000252007365
- 700 1_
- $a Zikmund, Tomas $u Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/0000000329485198
- 700 1_
- $a Kaiser, Jozef $u Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/000000027397125X
- 700 1_
- $a Edwards, Steven $u KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
- 700 1_
- $a Maki, Koichiro $u Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- 700 1_
- $a Adachi, Taiji $u Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan $1 https://orcid.org/0000000152804156
- 700 1_
- $a Yamamoto, Takuya $u Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan $u Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- 700 1_
- $a Fried, Kaj $u Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden. kaj.fried@ki.se $1 https://orcid.org/0000000299977078
- 700 1_
- $a Adameyko, Igor $u Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden. igor.adameyko@ki.se $u Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria. igor.adameyko@ki.se $1 https://orcid.org/0000000154710356
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 14, č. 1 (2023), s. 3060
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37244931 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230718 $b ABA008
- 991 __
- $a 20230801133009 $b ABA008
- 999 __
- $a ok $b bmc $g 1963656 $s 1197631
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 14 $c 1 $d 3060 $e 20230527 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- GRA __
- $a F32 DE029662 $p NIDCR NIH HHS $2 United States
- LZP __
- $a Pubmed-20230718