-
Je něco špatně v tomto záznamu ?
3D Visualization, Skeletonization and Branching Analysis of Blood Vessels in Angiogenesis
V. Ramakrishnan, R. Schönmehl, A. Artinger, L. Winter, H. Böck, S. Schreml, F. Gürtler, J. Daza, VH. Schmitt, A. Mamilos, P. Arbelaez, A. Teufel, T. Niedermair, O. Topolcan, M. Karlíková, S. Sossalla, CB. Wiedenroth, M. Rupp, C. Brochhausen
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
Grantová podpora
Ziel ETZ-352 2014 -2020
European Union
NLK
Free Medical Journals
od 2000
Freely Accessible Science Journals
od 2000
PubMed Central
od 2007
Europe PubMed Central
od 2007
ProQuest Central
od 2000-03-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2007-01-01
Health & Medicine (ProQuest)
od 2000-03-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
PubMed
37175421
DOI
10.3390/ijms24097714
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- kardiovaskulární fyziologické jevy MeSH
- morfogeneze MeSH
- neuronové sítě * MeSH
- počítačové zpracování obrazu MeSH
- zobrazování trojrozměrné * metody MeSH
- Publikační typ
- časopisecké články MeSH
Angiogenesis is the process of new blood vessels growing from existing vasculature. Visualizing them as a three-dimensional (3D) model is a challenging, yet relevant, task as it would be of great help to researchers, pathologists, and medical doctors. A branching analysis on the 3D model would further facilitate research and diagnostic purposes. In this paper, a pipeline of vision algorithms is elaborated to visualize and analyze blood vessels in 3D from formalin-fixed paraffin-embedded (FFPE) granulation tissue sections with two different staining methods. First, a U-net neural network is used to segment blood vessels from the tissues. Second, image registration is used to align the consecutive images. Coarse registration using an image-intensity optimization technique, followed by finetuning using a neural network based on Spatial Transformers, results in an excellent alignment of images. Lastly, the corresponding segmented masks depicting the blood vessels are aligned and interpolated using the results of the image registration, resulting in a visualized 3D model. Additionally, a skeletonization algorithm is used to analyze the branching characteristics of the 3D vascular model. In summary, computer vision and deep learning is used to reconstruct, visualize and analyze a 3D vascular model from a set of parallel tissue samples. Our technique opens innovative perspectives in the pathophysiological understanding of vascular morphogenesis under different pathophysiological conditions and its potential diagnostic role.
Biomedical Center Faculty of Medicine in Pilsen Charles University 32300 Pilsen Czech Republic
Central Biobank Regensburg University and University Hospital Regensburg 93053 Regensburg Germany
Department of Dermatology University Medical Centre Regensburg 93053 Regensburg Germany
Department of Internal Medicine 2 University Hospital Regensburg 93053 Regensburg Germany
Department of Thoracic Surgery Kerckhoff Clinic 61231 Bad Nauheim Germany
Department of Trauma Surgery University Medical Centre Regensburg 93053 Regensburg Germany
Institute of Pathology University of Regensburg 93053 Regensburg Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23011725
- 003
- CZ-PrNML
- 005
- 20230801133259.0
- 007
- ta
- 008
- 230718s2023 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijms24097714 $2 doi
- 035 __
- $a (PubMed)37175421
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Ramakrishnan, Vignesh $u Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany $u Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany $1 https://orcid.org/0000000330551017
- 245 10
- $a 3D Visualization, Skeletonization and Branching Analysis of Blood Vessels in Angiogenesis / $c V. Ramakrishnan, R. Schönmehl, A. Artinger, L. Winter, H. Böck, S. Schreml, F. Gürtler, J. Daza, VH. Schmitt, A. Mamilos, P. Arbelaez, A. Teufel, T. Niedermair, O. Topolcan, M. Karlíková, S. Sossalla, CB. Wiedenroth, M. Rupp, C. Brochhausen
- 520 9_
- $a Angiogenesis is the process of new blood vessels growing from existing vasculature. Visualizing them as a three-dimensional (3D) model is a challenging, yet relevant, task as it would be of great help to researchers, pathologists, and medical doctors. A branching analysis on the 3D model would further facilitate research and diagnostic purposes. In this paper, a pipeline of vision algorithms is elaborated to visualize and analyze blood vessels in 3D from formalin-fixed paraffin-embedded (FFPE) granulation tissue sections with two different staining methods. First, a U-net neural network is used to segment blood vessels from the tissues. Second, image registration is used to align the consecutive images. Coarse registration using an image-intensity optimization technique, followed by finetuning using a neural network based on Spatial Transformers, results in an excellent alignment of images. Lastly, the corresponding segmented masks depicting the blood vessels are aligned and interpolated using the results of the image registration, resulting in a visualized 3D model. Additionally, a skeletonization algorithm is used to analyze the branching characteristics of the 3D vascular model. In summary, computer vision and deep learning is used to reconstruct, visualize and analyze a 3D vascular model from a set of parallel tissue samples. Our technique opens innovative perspectives in the pathophysiological understanding of vascular morphogenesis under different pathophysiological conditions and its potential diagnostic role.
- 650 12
- $a zobrazování trojrozměrné $x metody $7 D021621
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a kardiovaskulární fyziologické jevy $7 D002320
- 650 _2
- $a morfogeneze $7 D009024
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Schönmehl, Rebecca $u Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, 68167 Mannheim, Germany
- 700 1_
- $a Artinger, Annalena $u Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, 68167 Mannheim, Germany $1 https://orcid.org/0000000202361147
- 700 1_
- $a Winter, Lina $u Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, 68167 Mannheim, Germany $1 https://orcid.org/0009000579310662
- 700 1_
- $a Böck, Hendrik $u Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, 68167 Mannheim, Germany
- 700 1_
- $a Schreml, Stephan $u Department of Dermatology, University Medical Centre Regensburg, 93053 Regensburg, Germany $1 https://orcid.org/0000000228201942
- 700 1_
- $a Gürtler, Florian $u Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany $u Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany $1 https://orcid.org/0000000323045239
- 700 1_
- $a Daza, Jimmy $u Department of Internal Medicine II, Division of Hepatology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany $1 https://orcid.org/0000000199025440
- 700 1_
- $a Schmitt, Volker H $u Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany $1 https://orcid.org/0000000150707280
- 700 1_
- $a Mamilos, Andreas $u Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany $u Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany $1 https://orcid.org/0000000208955675
- 700 1_
- $a Arbelaez, Pablo $u Center for Research and Formation in Artificial Intelligence (CinfonIA), Universidad de Los Andes, 111711 Bogota, Colombia
- 700 1_
- $a Teufel, Andreas $u Department of Internal Medicine II, Division of Hepatology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany $1 https://orcid.org/0000000179538927
- 700 1_
- $a Niedermair, Tanja $u Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany $u Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- 700 1_
- $a Topolcan, Ondrej $u Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
- 700 1_
- $a Karlíková, Marie $u Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
- 700 1_
- $a Sossalla, Samuel $u Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany $1 https://orcid.org/0000000180342673
- 700 1_
- $a Wiedenroth, Christoph B $u Department of Thoracic Surgery, Kerckhoff Clinic, 61231 Bad Nauheim, Germany
- 700 1_
- $a Rupp, Markus $u Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany $1 https://orcid.org/0000000172213783
- 700 1_
- $a Brochhausen, Christoph $u Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany $u Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, 68167 Mannheim, Germany
- 773 0_
- $w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 24, č. 9 (2023)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37175421 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230718 $b ABA008
- 991 __
- $a 20230801133256 $b ABA008
- 999 __
- $a ok $b bmc $g 1963893 $s 1197990
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 24 $c 9 $e 20230423 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
- GRA __
- $a Ziel ETZ-352 2014 -2020 $p European Union
- LZP __
- $a Pubmed-20230718