-
Je něco špatně v tomto záznamu ?
One-dimensional scintillator film with benign grain boundaries for high-resolution and fast x-ray imaging
H. Wu, Q. Wang, A. Zhang, G. Niu, M. Nikl, C. Ming, J. Zhu, Z. Zhou, YY. Sun, G. Nan, G. Ren, Y. Wu, J. Tang
Status neindexováno Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2015
Freely Accessible Science Journals
od 2015
PubMed Central
od 2015
Europe PubMed Central
od 2015
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2015
PubMed
37506201
DOI
10.1126/sciadv.adh1789
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Fast and high-resolution x-ray imaging demands scintillator films with negligible afterglow, high scintillation yield, and minimized cross-talk. However, grain boundaries (GBs) are abundant in polycrystalline scintillator film, and, for current inorganic scintillators, detrimental dangling bonds at GBs inevitably extend radioluminescence lifetime and increase nonradiative recombination loss, deteriorating afterglow and scintillation yield. Here, we demonstrate that scintillators with one-dimensional (1D) crystal structure, Cs5Cu3Cl6I2 explored here, possess benign GBs without dangling bonds, yielding nearly identical afterglow and scintillation yield for single crystals and polycrystalline films. Because of its 1D crystal structure, Cs5Cu3Cl6I2 films with desired columnar morphology are easily obtained via close space sublimation, exhibit negligible afterglow (0.1% at 10 ms) and high scintillation yield (1.2 times of CsI:Tl). We have also demonstrated fast x-ray imaging with 27 line pairs mm-1 resolution and frame rate up to 33 fps, surpassing most existing scintillators. We believe that the 1D scintillators can greatly boost x-ray imaging performance.
Department of Physics Zhejiang Normal University Jinhua 321004 Zhejiang China
Optics Valley Laboratory Hubei 430074 China
Wuhan National Laboratory for Optoelectronics Wuhan 430074 China
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23015612
- 003
- CZ-PrNML
- 005
- 20231020093529.0
- 007
- ta
- 008
- 231010s2023 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1126/sciadv.adh1789 $2 doi
- 035 __
- $a (PubMed)37506201
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Wu, Haodi $u Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China $1 https://orcid.org/0000000251382999
- 245 10
- $a One-dimensional scintillator film with benign grain boundaries for high-resolution and fast x-ray imaging / $c H. Wu, Q. Wang, A. Zhang, G. Niu, M. Nikl, C. Ming, J. Zhu, Z. Zhou, YY. Sun, G. Nan, G. Ren, Y. Wu, J. Tang
- 520 9_
- $a Fast and high-resolution x-ray imaging demands scintillator films with negligible afterglow, high scintillation yield, and minimized cross-talk. However, grain boundaries (GBs) are abundant in polycrystalline scintillator film, and, for current inorganic scintillators, detrimental dangling bonds at GBs inevitably extend radioluminescence lifetime and increase nonradiative recombination loss, deteriorating afterglow and scintillation yield. Here, we demonstrate that scintillators with one-dimensional (1D) crystal structure, Cs5Cu3Cl6I2 explored here, possess benign GBs without dangling bonds, yielding nearly identical afterglow and scintillation yield for single crystals and polycrystalline films. Because of its 1D crystal structure, Cs5Cu3Cl6I2 films with desired columnar morphology are easily obtained via close space sublimation, exhibit negligible afterglow (0.1% at 10 ms) and high scintillation yield (1.2 times of CsI:Tl). We have also demonstrated fast x-ray imaging with 27 line pairs mm-1 resolution and frame rate up to 33 fps, surpassing most existing scintillators. We believe that the 1D scintillators can greatly boost x-ray imaging performance.
- 590 __
- $a NEINDEXOVÁNO
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Wang, Qian $u Artificial Crystal Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China $1 https://orcid.org/0000000205902084
- 700 1_
- $a Zhang, Ao $u Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China $1 https://orcid.org/0009000538952642
- 700 1_
- $a Niu, Guangda $u Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China $u Optics Valley Laboratory, Hubei, 430074, China $1 https://orcid.org/0000000292854147
- 700 1_
- $a Nikl, Martin $u Department of Optical Materials, Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10/112, Prague 16200, Czech Republic $1 https://orcid.org/000000022378208X $7 xx0128821
- 700 1_
- $a Ming, Chen $u State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China $1 https://orcid.org/000000031994117X
- 700 1_
- $a Zhu, Jinsong $u Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China $1 https://orcid.org/0009000777208335
- 700 1_
- $a Zhou, Zhengyang $u State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China $1 https://orcid.org/0009000600526266
- 700 1_
- $a Sun, Yi-Yang $u State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China $1 https://orcid.org/0000000203562688
- 700 1_
- $a Nan, Guangjun $u Department of Physics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China $1 https://orcid.org/0000000251858336
- 700 1_
- $a Ren, Guohao $u Artificial Crystal Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China $1 https://orcid.org/0000000289189502
- 700 1_
- $a Wu, Yuntao $u Artificial Crystal Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China $1 https://orcid.org/0000000297080304
- 700 1_
- $a Tang, Jiang $u Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China $u Optics Valley Laboratory, Hubei, 430074, China $1 https://orcid.org/0000000325742943
- 773 0_
- $w MED00188818 $t Science advances $x 2375-2548 $g Roč. 9, č. 30 (2023), s. eadh1789
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37506201 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20231010 $b ABA008
- 991 __
- $a 20231020093522 $b ABA008
- 999 __
- $a ok $b bmc $g 1997207 $s 1201974
- BAS __
- $a 3
- BAS __
- $a PreBMC-PubMed-not-MEDLINE
- BMC __
- $a 2023 $b 9 $c 30 $d eadh1789 $e 20230728 $i 2375-2548 $m Science advances $n Sci Adv $x MED00188818
- LZP __
- $a Pubmed-20231010