• Je něco špatně v tomto záznamu ?

Novel bimodal TRBD1-TRBD2 rearrangements with dual or absent D-region contribute to TRB V-(D)-J combinatorial diversity

AO. Smirnova, AM. Miroshnichenkova, LD. Belyaeva, IV. Kelmanson, YB. Lebedev, IZ. Mamedov, DM. Chudakov, AY. Komkov

. 2023 ; 14 (-) : 1245175. [pub] 20230907

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23016263

T-cell receptor (TR) diversity of the variable domains is generated by recombination of both the alpha (TRA) and beta (TRB) chains. The textbook process of TRB chain production starts with TRBD and TRBJ gene rearrangement, followed by the rearrangement of a TRBV gene to the partially rearranged D-J gene. Unsuccessful V-D-J TRB rearrangements lead to apoptosis of the cell. Here, we performed deep sequencing of the poorly explored pool of partial TRBD1-TRBD2 rearrangements in T-cell genomic DNA. We reconstructed full repertoires of human partial TRBD1-TRBD2 rearrangements using novel sequencing and validated them by detecting V-D-J recombination-specific byproducts: excision circles containing the recombination signal (RS) joint 5'D2-RS - 3'D1-RS. Identified rearrangements were in compliance with the classical 12/23 rule, common for humans, rats, and mice and contained typical V-D-J recombination footprints. Interestingly, we detected a bimodal distribution of D-D junctions indicating two active recombination sites producing long and short D-D rearrangements. Long TRB D-D rearrangements with two D-regions are coding joints D1-D2 remaining classically on the chromosome. The short TRB D-D rearrangements with no D-region are signal joints, the coding joint D1-D2 being excised from the chromosome. They both contribute to the TRB V-(D)-J combinatorial diversity. Indeed, short D-D rearrangements may be followed by direct V-J2 recombination. Long D-D rearrangements may recombine further with J2 and V genes forming partial D1-D2-J2 and then complete V-D1-D2-J2 rearrangement. Productive TRB V-D1-D2-J2 chains are present and expressed in thousands of clones of human antigen-experienced memory T cells proving their capacity for antigen recognition and actual participation in the immune response.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23016263
003      
CZ-PrNML
005      
20231026110058.0
007      
ta
008      
231013s2023 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3389/fimmu.2023.1245175 $2 doi
035    __
$a (PubMed)37744336
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Smirnova, Anastasia O $u Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia $u Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
245    10
$a Novel bimodal TRBD1-TRBD2 rearrangements with dual or absent D-region contribute to TRB V-(D)-J combinatorial diversity / $c AO. Smirnova, AM. Miroshnichenkova, LD. Belyaeva, IV. Kelmanson, YB. Lebedev, IZ. Mamedov, DM. Chudakov, AY. Komkov
520    9_
$a T-cell receptor (TR) diversity of the variable domains is generated by recombination of both the alpha (TRA) and beta (TRB) chains. The textbook process of TRB chain production starts with TRBD and TRBJ gene rearrangement, followed by the rearrangement of a TRBV gene to the partially rearranged D-J gene. Unsuccessful V-D-J TRB rearrangements lead to apoptosis of the cell. Here, we performed deep sequencing of the poorly explored pool of partial TRBD1-TRBD2 rearrangements in T-cell genomic DNA. We reconstructed full repertoires of human partial TRBD1-TRBD2 rearrangements using novel sequencing and validated them by detecting V-D-J recombination-specific byproducts: excision circles containing the recombination signal (RS) joint 5'D2-RS - 3'D1-RS. Identified rearrangements were in compliance with the classical 12/23 rule, common for humans, rats, and mice and contained typical V-D-J recombination footprints. Interestingly, we detected a bimodal distribution of D-D junctions indicating two active recombination sites producing long and short D-D rearrangements. Long TRB D-D rearrangements with two D-regions are coding joints D1-D2 remaining classically on the chromosome. The short TRB D-D rearrangements with no D-region are signal joints, the coding joint D1-D2 being excised from the chromosome. They both contribute to the TRB V-(D)-J combinatorial diversity. Indeed, short D-D rearrangements may be followed by direct V-J2 recombination. Long D-D rearrangements may recombine further with J2 and V genes forming partial D1-D2-J2 and then complete V-D1-D2-J2 rearrangement. Productive TRB V-D1-D2-J2 chains are present and expressed in thousands of clones of human antigen-experienced memory T cells proving their capacity for antigen recognition and actual participation in the immune response.
650    _2
$a zvířata $7 D000818
650    _2
$a lidé $7 D006801
650    _2
$a myši $7 D051379
650    _2
$a krysa rodu Rattus $7 D051381
650    12
$a apoptóza $7 D017209
650    _2
$a chromozomální aberace $7 D002869
650    _2
$a buněčné klony $7 D002999
650    12
$a geny TcR beta $7 D019674
650    _2
$a paměťové T-buňky $7 D000091246
650    12
$a V(D)J rekombinace $7 D060152
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Miroshnichenkova, Anna M $u Abu Dhabi Stem Cells Center (ADSCC), Abu Dhabi, United Arab Emirates
700    1_
$a Belyaeva, Laima D $u Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
700    1_
$a Kelmanson, Ilya V $u Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Lebedev, Yuri B $u Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia $u Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
700    1_
$a Mamedov, Ilgar Z $u Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
700    1_
$a Chudakov, Dmitriy M $u Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia $u Abu Dhabi Stem Cells Center (ADSCC), Abu Dhabi, United Arab Emirates $u Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia $u Central European Institute of Technology, Masaryk University, Brno, Czechia
700    1_
$a Komkov, Alexander Y $u Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia $u Abu Dhabi Stem Cells Center (ADSCC), Abu Dhabi, United Arab Emirates $u Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
773    0_
$w MED00181405 $t Frontiers in immunology $x 1664-3224 $g Roč. 14, č. - (2023), s. 1245175
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37744336 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026110053 $b ABA008
999    __
$a ok $b bmc $g 2000027 $s 1202625
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 14 $c - $d 1245175 $e 20230907 $i 1664-3224 $m Frontiers in immunology $n Front Immunol $x MED00181405
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...