-
Je něco špatně v tomto záznamu ?
Characterization of a transitionally occupied state and thermal unfolding of domain 1.1 of σA factor of RNA polymerase from Bacillus subtilis
D. Tužinčin, P. Padrta, H. Šanderová, A. Rabatinová, K. Bendová, L. Krásný, L. Žídek, P. Kadeřávek
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37350110
DOI
10.1002/prot.26531
Knihovny.cz E-zdroje
- MeSH
- amidy metabolismus MeSH
- Bacillus subtilis * enzymologie MeSH
- DNA řízené RNA-polymerasy * chemie metabolismus MeSH
- molekulární modely MeSH
- proteinové domény MeSH
- protony MeSH
- rozbalení proteinů * MeSH
- sigma faktor * chemie metabolismus MeSH
- teplota * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
σ factors are essential parts of bacterial RNA polymerase (RNAP) as they allow to recognize promotor sequences and initiate transcription. Domain 1.1 of vegetative σ factors occupies the primary channel of RNAP and also prevents binding of the σ factor to promoter DNA alone. Here, we show that domain 1.1 of Bacillus subtilis σA exists in more structurally distinct variants in dynamic equilibrium. The major conformation at room temperature is represented by a previously reported well-folded structure solved by nuclear magnetic resonance (NMR), but 4% of the protein molecules are present in a less thermodynamically favorable state. We show that this population increases with temperature and we predict its significant elevation at higher but still biologically relevant temperatures. We characterized the minor state of the domain 1.1 using specialized methods of NMR. We found that, in contrast to the major state, the detected minor state is partially unfolded. Its propensity to form secondary structure elements is especially decreased for the first and third α helices, while the second α helix and β strand close to the C-terminus are more stable. We also analyzed thermal unfolding of the domain 1.1 and performed functional experiments with full length σA and its shortened version lacking domain 1.1 ( σA_Δ1.1 ). The results revealed that while full length σA increases transcription activity of RNAP with increasing temperature, transcription with σA_Δ1.1 remains constant. In summary, this study reveals conformational dynamics of domain 1.1 and provides a basis for studies of its interaction with RNAP and effects on transcription regulation.
Central European Institute of Technology Masaryk University Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23016392
- 003
- CZ-PrNML
- 005
- 20231026105929.0
- 007
- ta
- 008
- 231013s2023 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/prot.26531 $2 doi
- 035 __
- $a (PubMed)37350110
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Tužinčin, Dávid $u National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czech Republic $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- 245 10
- $a Characterization of a transitionally occupied state and thermal unfolding of domain 1.1 of σA factor of RNA polymerase from Bacillus subtilis / $c D. Tužinčin, P. Padrta, H. Šanderová, A. Rabatinová, K. Bendová, L. Krásný, L. Žídek, P. Kadeřávek
- 520 9_
- $a σ factors are essential parts of bacterial RNA polymerase (RNAP) as they allow to recognize promotor sequences and initiate transcription. Domain 1.1 of vegetative σ factors occupies the primary channel of RNAP and also prevents binding of the σ factor to promoter DNA alone. Here, we show that domain 1.1 of Bacillus subtilis σA exists in more structurally distinct variants in dynamic equilibrium. The major conformation at room temperature is represented by a previously reported well-folded structure solved by nuclear magnetic resonance (NMR), but 4% of the protein molecules are present in a less thermodynamically favorable state. We show that this population increases with temperature and we predict its significant elevation at higher but still biologically relevant temperatures. We characterized the minor state of the domain 1.1 using specialized methods of NMR. We found that, in contrast to the major state, the detected minor state is partially unfolded. Its propensity to form secondary structure elements is especially decreased for the first and third α helices, while the second α helix and β strand close to the C-terminus are more stable. We also analyzed thermal unfolding of the domain 1.1 and performed functional experiments with full length σA and its shortened version lacking domain 1.1 ( σA_Δ1.1 ). The results revealed that while full length σA increases transcription activity of RNAP with increasing temperature, transcription with σA_Δ1.1 remains constant. In summary, this study reveals conformational dynamics of domain 1.1 and provides a basis for studies of its interaction with RNAP and effects on transcription regulation.
- 650 _2
- $a amidy $x metabolismus $7 D000577
- 650 12
- $a Bacillus subtilis $x enzymologie $7 D001412
- 650 12
- $a DNA řízené RNA-polymerasy $x chemie $x metabolismus $7 D012321
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a proteinové domény $7 D000072417
- 650 12
- $a rozbalení proteinů $7 D058767
- 650 _2
- $a protony $7 D011522
- 650 12
- $a sigma faktor $x chemie $x metabolismus $7 D012808
- 650 12
- $a teplota $7 D013696
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Padrta, Petr $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- 700 1_
- $a Šanderová, Hana $u Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Rabatinová, Alžběta $u Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Bendová, Kateřina $u National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czech Republic $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- 700 1_
- $a Krásný, Libor $u Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Žídek, Lukáš $u National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czech Republic $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- 700 1_
- $a Kadeřávek, Pavel $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $1 https://orcid.org/000000023561354X $7 mub2013762006
- 773 0_
- $w MED00003938 $t Proteins $x 1097-0134 $g Roč. 91, č. 9 (2023), s. 1276-1287
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37350110 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20231013 $b ABA008
- 991 __
- $a 20231026105923 $b ABA008
- 999 __
- $a ok $b bmc $g 2000106 $s 1202754
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 91 $c 9 $d 1276-1287 $e 20230622 $i 1097-0134 $m Proteins $n Proteins $x MED00003938
- LZP __
- $a Pubmed-20231013