-
Je něco špatně v tomto záznamu ?
Increased blood reactive oxygen species and hepcidin in obstructive sleep apnea precludes expected erythrocytosis
J. Song, KM. Sundar, M. Horvathova, R. Gangaraju, K. Indrak, RD. Christensen, S. Genzor, C. Lundby, V. Divoky, T. Ganz, JT. Prchal
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
2T32HL007576-31
NHLBI NIH HHS - United States
K08 HL159290
NHLBI NIH HHS - United States
1R01DK126680
NIDDK NIH HHS - United States
5T32DK007115
NIDDK NIH HHS - United States
NLK
Free Medical Journals
od 1998 do Před 1 rokem
Wiley Free Content
od 1996 do Před 1 rokem
PubMed
37350302
DOI
10.1002/ajh.26992
Knihovny.cz E-zdroje
- MeSH
- hepcidiny MeSH
- hypoxie MeSH
- lidé MeSH
- obstrukční spánková apnoe * komplikace MeSH
- polycytemie * etiologie MeSH
- reaktivní formy kyslíku MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Obstructive sleep apnea (OSA) causes intermittent hypoxia during sleep. Hypoxia predictably initiates an increase in the blood hemoglobin concentration (Hb); yet in our analysis of 527 patients with OSA, >98% did not have an elevated Hb. To understand why patients with OSA do not develop secondary erythrocytosis due to intermittent hypoxia, we first hypothesized that erythrocytosis occurs in these patients, but is masked by a concomitant increase in plasma volume. However, we excluded that explanation by finding that the red cell mass was normal (measured by radionuclide labeling of erythrocytes and carbon monoxide inhalation). We next studied 45 patients with OSA before and after applying continuous positive airway pressure (CPAP). We found accelerated erythropoiesis in these patients (increased erythropoietin and reticulocytosis), but it was offset by neocytolysis (lysis of erythrocytes newly generated in hypoxia upon return to normoxia). Parameters of neocytolysis included increased reactive oxygen species from expanded reticulocytes' mitochondria. The antioxidant catalase was also downregulated in these cells from hypoxia-stimulated microRNA-21. In addition, inflammation-induced hepcidin limited iron availability for erythropoiesis. After CPAP, some of these intermediaries diminished but Hb did not change. We conclude that in OSA, the absence of significant increase in red cell mass is integral to the pathogenesis, and results from hemolysis via neocytolysis combined with inflammation-mediated suppression of erythropoiesis.
Centre for Physical Activity Research Copenhagen Denmark
Department of Biology Palacky University Olomouc Olomouc Czech Republic
Department of Neonatology University of Utah Salt Lake City Utah USA
Division of Hematology University of Utah Salt Lake City Utah USA
Division of Pulmonary and Critical Care Medicine University of Utah Salt Lake City Utah USA
Pathology and Laboratory Medicine UCLA Los Angeles California USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23016687
- 003
- CZ-PrNML
- 005
- 20231026105627.0
- 007
- ta
- 008
- 231013s2023 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/ajh.26992 $2 doi
- 035 __
- $a (PubMed)37350302
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Song, Jihyun $u Division of Hematology, University of Utah, Salt Lake City, Utah, USA $1 https://orcid.org/0000000212690892
- 245 10
- $a Increased blood reactive oxygen species and hepcidin in obstructive sleep apnea precludes expected erythrocytosis / $c J. Song, KM. Sundar, M. Horvathova, R. Gangaraju, K. Indrak, RD. Christensen, S. Genzor, C. Lundby, V. Divoky, T. Ganz, JT. Prchal
- 520 9_
- $a Obstructive sleep apnea (OSA) causes intermittent hypoxia during sleep. Hypoxia predictably initiates an increase in the blood hemoglobin concentration (Hb); yet in our analysis of 527 patients with OSA, >98% did not have an elevated Hb. To understand why patients with OSA do not develop secondary erythrocytosis due to intermittent hypoxia, we first hypothesized that erythrocytosis occurs in these patients, but is masked by a concomitant increase in plasma volume. However, we excluded that explanation by finding that the red cell mass was normal (measured by radionuclide labeling of erythrocytes and carbon monoxide inhalation). We next studied 45 patients with OSA before and after applying continuous positive airway pressure (CPAP). We found accelerated erythropoiesis in these patients (increased erythropoietin and reticulocytosis), but it was offset by neocytolysis (lysis of erythrocytes newly generated in hypoxia upon return to normoxia). Parameters of neocytolysis included increased reactive oxygen species from expanded reticulocytes' mitochondria. The antioxidant catalase was also downregulated in these cells from hypoxia-stimulated microRNA-21. In addition, inflammation-induced hepcidin limited iron availability for erythropoiesis. After CPAP, some of these intermediaries diminished but Hb did not change. We conclude that in OSA, the absence of significant increase in red cell mass is integral to the pathogenesis, and results from hemolysis via neocytolysis combined with inflammation-mediated suppression of erythropoiesis.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a reaktivní formy kyslíku $7 D017382
- 650 12
- $a polycytemie $x etiologie $7 D011086
- 650 _2
- $a hepcidiny $7 D064451
- 650 _2
- $a hypoxie $7 D000860
- 650 12
- $a obstrukční spánková apnoe $x komplikace $7 D020181
- 650 _2
- $a zánět $7 D007249
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Sundar, Krishna M $u Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, Utah, USA $1 https://orcid.org/0000000172205767
- 700 1_
- $a Horvathova, Monika $u Department of Biology, Palacky University Olomouc, Olomouc, Czech Republic $u Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic $1 https://orcid.org/0000000338578986 $7 ntk2011644397
- 700 1_
- $a Gangaraju, Radhika $u Division of Hematology, University of Utah, Salt Lake City, Utah, USA $u Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA $1 https://orcid.org/0000000255424754
- 700 1_
- $a Indrak, Karel $u Department of Hemato-Oncology, Palacky University and University Hospital Olomouc (PUUHO), Olomouc, Czech Republic
- 700 1_
- $a Christensen, Robert D $u Department of Neonatology, University of Utah, Salt Lake City, Utah, USA
- 700 1_
- $a Genzor, Samuel $u Department of Pulmonary Diseases and Tuberculosis, Faculty of Medicine and Dentistry, PUUHO, Olomouc, Czech Republic
- 700 1_
- $a Lundby, Carsten $u Centre for Physical Activity Research, Copenhagen, Denmark
- 700 1_
- $a Divoky, Vladimir $u Department of Biology, Palacky University Olomouc, Olomouc, Czech Republic $u Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic $1 https://orcid.org/000000030202245X $7 xx0018902
- 700 1_
- $a Ganz, Tomas $u Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA $1 https://orcid.org/0000000228305469 $7 xx0301621
- 700 1_
- $a Prchal, Josef T $u Division of Hematology, University of Utah, Salt Lake City, Utah, USA $1 https://orcid.org/0000000280192940
- 773 0_
- $w MED00000251 $t American journal of hematology $x 1096-8652 $g Roč. 98, č. 8 (2023), s. 1265-1276
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37350302 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20231013 $b ABA008
- 991 __
- $a 20231026105621 $b ABA008
- 999 __
- $a ok $b bmc $g 2000292 $s 1203049
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 98 $c 8 $d 1265-1276 $e 20230623 $i 1096-8652 $m American journal of hematology $n Am J Hematol $x MED00000251
- GRA __
- $a 2T32HL007576-31 $p NHLBI NIH HHS $2 United States
- GRA __
- $a K08 HL159290 $p NHLBI NIH HHS $2 United States
- GRA __
- $a 1R01DK126680 $p NIDDK NIH HHS $2 United States
- GRA __
- $a 5T32DK007115 $p NIDDK NIH HHS $2 United States
- LZP __
- $a Pubmed-20231013