• Je něco špatně v tomto záznamu ?

Accurate sequencing of DNA motifs able to form alternative (non-B) structures

MH. Weissensteiner, MA. Cremona, WM. Guiblet, N. Stoler, RS. Harris, M. Cechova, KA. Eckert, F. Chiaromonte, YF. Huang, KD. Makova

. 2023 ; 33 (6) : 907-922. [pub] 20230711

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/bmc23017070

Grantová podpora
R01 GM136684 NIGMS NIH HHS - United States

E-zdroje Online Plný text

NLK Free Medical Journals od 1991 do Před 6 měsíci
Freely Accessible Science Journals od 1991-08-01 do Před 1 rokem
PubMed Central od 1997 do Před 6 měsíci
Europe PubMed Central od 1997 do Před 6 měsíci
Open Access Digital Library od 1991-08-01
Open Access Digital Library od 1991-08-01

Approximately 13% of the human genome at certain motifs have the potential to form noncanonical (non-B) DNA structures (e.g., G-quadruplexes, cruciforms, and Z-DNA), which regulate many cellular processes but also affect the activity of polymerases and helicases. Because sequencing technologies use these enzymes, they might possess increased errors at non-B structures. To evaluate this, we analyzed error rates, read depth, and base quality of Illumina, Pacific Biosciences (PacBio) HiFi, and Oxford Nanopore Technologies (ONT) sequencing at non-B motifs. All technologies showed altered sequencing success for most non-B motif types, although this could be owing to several factors, including structure formation, biased GC content, and the presence of homopolymers. Single-nucleotide mismatch errors had low biases in HiFi and ONT for all non-B motif types but were increased for G-quadruplexes and Z-DNA in all three technologies. Deletion errors were increased for all non-B types but Z-DNA in Illumina and HiFi, as well as only for G-quadruplexes in ONT. Insertion errors for non-B motifs were highly, moderately, and slightly elevated in Illumina, HiFi, and ONT, respectively. Additionally, we developed a probabilistic approach to determine the number of false positives at non-B motifs depending on sample size and variant frequency, and applied it to publicly available data sets (1000 Genomes, Simons Genome Diversity Project, and gnomAD). We conclude that elevated sequencing errors at non-B DNA motifs should be considered in low-read-depth studies (single-cell, ancient DNA, and pooled-sample population sequencing) and in scoring rare variants. Combining technologies should maximize sequencing accuracy in future studies of non-B DNA.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23017070
003      
CZ-PrNML
005      
20231026105422.0
007      
ta
008      
231013s2023 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1101/gr.277490.122 $2 doi
035    __
$a (PubMed)37433640
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Weissensteiner, Matthias H $u Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
245    10
$a Accurate sequencing of DNA motifs able to form alternative (non-B) structures / $c MH. Weissensteiner, MA. Cremona, WM. Guiblet, N. Stoler, RS. Harris, M. Cechova, KA. Eckert, F. Chiaromonte, YF. Huang, KD. Makova
520    9_
$a Approximately 13% of the human genome at certain motifs have the potential to form noncanonical (non-B) DNA structures (e.g., G-quadruplexes, cruciforms, and Z-DNA), which regulate many cellular processes but also affect the activity of polymerases and helicases. Because sequencing technologies use these enzymes, they might possess increased errors at non-B structures. To evaluate this, we analyzed error rates, read depth, and base quality of Illumina, Pacific Biosciences (PacBio) HiFi, and Oxford Nanopore Technologies (ONT) sequencing at non-B motifs. All technologies showed altered sequencing success for most non-B motif types, although this could be owing to several factors, including structure formation, biased GC content, and the presence of homopolymers. Single-nucleotide mismatch errors had low biases in HiFi and ONT for all non-B motif types but were increased for G-quadruplexes and Z-DNA in all three technologies. Deletion errors were increased for all non-B types but Z-DNA in Illumina and HiFi, as well as only for G-quadruplexes in ONT. Insertion errors for non-B motifs were highly, moderately, and slightly elevated in Illumina, HiFi, and ONT, respectively. Additionally, we developed a probabilistic approach to determine the number of false positives at non-B motifs depending on sample size and variant frequency, and applied it to publicly available data sets (1000 Genomes, Simons Genome Diversity Project, and gnomAD). We conclude that elevated sequencing errors at non-B DNA motifs should be considered in low-read-depth studies (single-cell, ancient DNA, and pooled-sample population sequencing) and in scoring rare variants. Combining technologies should maximize sequencing accuracy in future studies of non-B DNA.
650    _2
$a lidé $7 D006801
650    _2
$a nukleotidové motivy $7 D059372
650    12
$a Z-DNA $7 D043542
650    _2
$a sekvenční analýza DNA $7 D017422
650    _2
$a DNA $x genetika $7 D004247
650    _2
$a zastoupení bazí $7 D001482
650    _2
$a vysoce účinné nukleotidové sekvenování $7 D059014
650    12
$a nanopóry $7 D058608
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
700    1_
$a Cremona, Marzia A $u Department of Operations and Decision Systems, Université Laval, Quebec, Quebec G1V0A6, Canada $u Population Health and Optimal Health Practices, CHU de Québec-Université Laval Research Center, Québec, Quebec G1V4G2, Canada $u Center for Medical Genomics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA $1 https://orcid.org/0000000188997316
700    1_
$a Guiblet, Wilfried M $u Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA $u Laboratory of Cell Biology, NCI-CCR, National Institutes of Health, Bethesda, Maryland 20892, USA
700    1_
$a Stoler, Nicholas $u Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
700    1_
$a Harris, Robert S $u Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
700    1_
$a Cechova, Monika $u Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA $u Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
700    1_
$a Eckert, Kristin A $u Center for Medical Genomics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA $u Department of Pathology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
700    1_
$a Chiaromonte, Francesca $u Center for Medical Genomics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA $u Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA $u Institute of Economics and L'EMbeDS, Sant'Anna School of Advanced Studies, Pisa 56127, Italy
700    1_
$a Huang, Yi-Fei $u Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA $u Center for Medical Genomics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
700    1_
$a Makova, Kateryna D $u Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; kdm16@psu.edu $u Center for Medical Genomics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
773    0_
$w MED00001911 $t Genome research $x 1549-5469 $g Roč. 33, č. 6 (2023), s. 907-922
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37433640 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105417 $b ABA008
999    __
$a ok $b bmc $g 2000545 $s 1203432
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 33 $c 6 $d 907-922 $e 20230711 $i 1549-5469 $m Genome research $n Genome Res $x MED00001911
GRA    __
$a R01 GM136684 $p NIGMS NIH HHS $2 United States
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...