Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Robust and adaptive terrain classification and gait event detection system

UQ. Shaikh, M. Shahzaib, S. Shakil, FA. Bhatti, M. Aamir Saeed

. 2023 ; 9 (11) : e21720. [pub] 20231031

Status not-indexed Language English Country England, Great Britain

Document type Journal Article

Real-time gait event detection (GED) system can be utilized for gait analysis and tracking fitness activities. GED for various types of terrains (e.g., stair-walk, uneven surfaces, etc.) is still an open research problem. This study presents an inertial sensor-based approach for real-time GED system that works for diverse terrains in an uncontrolled environment. The GED system classifies three types of terrains, i.e., flat-walk, stair-ascend and stair-descend, with an average classification accuracy of 99%. It also accurately detects various gait events, including, toe-strike, heel-rise, toe-off, and heel-strike. It is computationally efficient, implemented on a low-cost microcontroller, works in real-time and can be used in portable rehabilitation devices for use in dynamic environments.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23022596
003      
CZ-PrNML
005      
20240116163100.0
007      
ta
008      
240105s2023 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.heliyon.2023.e21720 $2 doi
035    __
$a (PubMed)38027844
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Shaikh, Usman Qamar $u Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand $u Biosignal Processing and Computational NeuroScience (BiCoNeS) Lab, Institute of Space Technology, Pakistan
245    10
$a Robust and adaptive terrain classification and gait event detection system / $c UQ. Shaikh, M. Shahzaib, S. Shakil, FA. Bhatti, M. Aamir Saeed
520    9_
$a Real-time gait event detection (GED) system can be utilized for gait analysis and tracking fitness activities. GED for various types of terrains (e.g., stair-walk, uneven surfaces, etc.) is still an open research problem. This study presents an inertial sensor-based approach for real-time GED system that works for diverse terrains in an uncontrolled environment. The GED system classifies three types of terrains, i.e., flat-walk, stair-ascend and stair-descend, with an average classification accuracy of 99%. It also accurately detects various gait events, including, toe-strike, heel-rise, toe-off, and heel-strike. It is computationally efficient, implemented on a low-cost microcontroller, works in real-time and can be used in portable rehabilitation devices for use in dynamic environments.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Shahzaib, Muhammad $u Biosignal Processing and Computational NeuroScience (BiCoNeS) Lab, Institute of Space Technology, Pakistan
700    1_
$a Shakil, Sadia $u Biosignal Processing and Computational NeuroScience (BiCoNeS) Lab, Institute of Space Technology, Pakistan $u Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
700    1_
$a Bhatti, Farrukh A $u NewVative Technologies (Pvt) Ltd, Islamabad, Pakistan
700    1_
$a Aamir Saeed, Malik $u Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
773    0_
$w MED00190064 $t Heliyon $x 2405-8440 $g Roč. 9, č. 11 (2023), s. e21720
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38027844 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240105 $b ABA008
991    __
$a 20240116163056 $b ABA008
999    __
$a ok $b bmc $g 2036330 $s 1209041
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2023 $b 9 $c 11 $d e21720 $e 20231031 $i 2405-8440 $m Heliyon $n Heliyon $x MED00190064
LZP    __
$a Pubmed-20240105

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...