Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The level of protein in the maternal murine diet modulates the facial appearance of the offspring via mTORC1 signaling

M. Xie, M. Kaiser, Y. Gershtein, D. Schnyder, R. Deviatiiarov, G. Gazizova, E. Shagimardanova, T. Zikmund, G. Kerckhofs, E. Ivashkin, D. Batkovskyte, PT. Newton, O. Andersson, K. Fried, O. Gusev, H. Zeberg, J. Kaiser, I. Adameyko, AS. Chagin

. 2024 ; 15 (1) : 2367. [pub] 20240326

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24006657

Grantová podpora
2020-02298 Vetenskapsrådet (Swedish Research Council)
NNF21OC0070314 Novo Nordisk Fonden (Novo Nordisk Foundation)

The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.

A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia

Astrid Lindgren Children's hospital Stockholm Sweden

Biomechanics Lab Institute of Mechanics Materials and Civil Engineering UCLouvain Louvain la Neuve Belgium

Central European Institute of Technology Brno University of Technology Brno Czech Republic

Centre for Bone and Arthritis Research Institute of Medicine Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden

Department of Biosciences and Nutrition Karolinska Institute Flemingsberg Sweden

Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden

Department of Developmental and Comparative Physiology N K Koltsov Institute of Developmental Biology Russian Academy of Sciences Moscow Russia

Department of Materials Engineering KU Leuven Leuven Belgium

Department of Neuroimmunology Center for Brain Research Medical University of Vienna Vienna Austria

Department of Neuroscience Karolinska Institutet Stockholm Sweden

Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden

Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden

Endocrinology Research Center Moscow Russia

Intractable Disease Research Center Juntendo University Tokyo Japan

Life Improvement by Future Technologies Center Moscow Russia

Pole of Morphology Institute of Experimental and Clinical Research UCLouvain Woluwe Belgium

Prometheus Division for Skeletal Tissue Engineering KU Leuven Leuven Belgium

Regulatory Genomics Research Center Kazan Federal University Kazan Russia

School of Psychological and Cognitive Sciences PKU IDG McGovern Institute for Brain Research Peking University Beijing China

000      
00000naa a2200000 a 4500
001      
bmc24006657
003      
CZ-PrNML
005      
20240423155429.0
007      
ta
008      
240412s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41467-024-46030-3 $2 doi
035    __
$a (PubMed)38531868
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Xie, Meng $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden $u Department of Biosciences and Nutrition, Karolinska Institute, Flemingsberg, Sweden $u School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China $1 https://orcid.org/0000000263889789
245    14
$a The level of protein in the maternal murine diet modulates the facial appearance of the offspring via mTORC1 signaling / $c M. Xie, M. Kaiser, Y. Gershtein, D. Schnyder, R. Deviatiiarov, G. Gazizova, E. Shagimardanova, T. Zikmund, G. Kerckhofs, E. Ivashkin, D. Batkovskyte, PT. Newton, O. Andersson, K. Fried, O. Gusev, H. Zeberg, J. Kaiser, I. Adameyko, AS. Chagin
520    9_
$a The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.
650    _2
$a těhotenství $7 D011247
650    _2
$a myši $7 D051379
650    _2
$a zvířata $7 D000818
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    12
$a dánio pruhované $7 D015027
650    12
$a signální transdukce $7 D015398
650    _2
$a proteiny $7 D011506
650    _2
$a mechanistické cílové místo rapamycinového komplexu 1 $7 D000076222
650    _2
$a dieta $7 D004032
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kaiser, Markéta $u Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/0000000252007365
700    1_
$a Gershtein, Yaakov $u Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
700    1_
$a Schnyder, Daniela $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden $u Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden $1 https://orcid.org/0000000295943823
700    1_
$a Deviatiiarov, Ruslan $u Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia $u Endocrinology Research Center, Moscow, Russia $u Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia $u Intractable Disease Research Center, Juntendo University, Tokyo, Japan $1 https://orcid.org/0000000300192076
700    1_
$a Gazizova, Guzel $u Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
700    1_
$a Shagimardanova, Elena $u Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia $u Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
700    1_
$a Zikmund, Tomáš $u Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/0000000329485198
700    1_
$a Kerckhofs, Greet $u Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering (iMMC), UCLouvain, Louvain-la-Neuve, Belgium $u Pole of Morphology, Institute of Experimental and Clinical Research (IREC), UCLouvain, Woluwe, Belgium $u Department of Materials Engineering, KU Leuven, Leuven, Belgium $u Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
700    1_
$a Ivashkin, Evgeny $u A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia $u Department of Developmental and Comparative Physiology, N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
700    1_
$a Batkovskyte, Dominyka $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden $1 https://orcid.org/0000000204921259
700    1_
$a Newton, Phillip T $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden $u Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden $u Astrid Lindgren Children's hospital, Stockholm, Sweden $1 https://orcid.org/0000000321421798
700    1_
$a Andersson, Olov $u Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden $1 https://orcid.org/000000016715781X
700    1_
$a Fried, Kaj $u Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden $1 https://orcid.org/0000000299977078
700    1_
$a Gusev, Oleg $u Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia $u Endocrinology Research Center, Moscow, Russia $u Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia $u Intractable Disease Research Center, Juntendo University, Tokyo, Japan
700    1_
$a Zeberg, Hugo $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden $1 https://orcid.org/0000000171181249 $7 xx0279402
700    1_
$a Kaiser, Jozef $u Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/000000027397125X
700    1_
$a Adameyko, Igor $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. igor.adameyko@meduniwien.ac.at $u Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria. igor.adameyko@meduniwien.ac.at $1 https://orcid.org/0000000154710356
700    1_
$a Chagin, Andrei S $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. andrei.chagin@gu.se $u Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden. andrei.chagin@gu.se
773    0_
$w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 15, č. 1 (2024), s. 2367
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38531868 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423155425 $b ABA008
999    __
$a ok $b bmc $g 2080959 $s 1216424
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 15 $c 1 $d 2367 $e 20240326 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
GRA    __
$a 2020-02298 $p Vetenskapsrådet (Swedish Research Council)
GRA    __
$a NNF21OC0070314 $p Novo Nordisk Fonden (Novo Nordisk Foundation)
LZP    __
$a Pubmed-20240412

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...