-
Something wrong with this record ?
STAT3 couples activated tyrosine kinase signaling to the oncogenic core transcriptional regulatory circuitry of anaplastic large cell lymphoma
N. Prutsch, S. He, A. Berezovskaya, AD. Durbin, NV. Dharia, KA. Maher, JD. Matthews, L. Hare, SD. Turner, K. Stegmaier, L. Kenner, O. Merkel, AT. Look, BJ. Abraham, MW. Zimmerman
Language English Country United States
Document type Journal Article
NLK
Directory of Open Access Journals
from 2020
PubMed Central
from 2020
ROAD: Directory of Open Access Scholarly Resources
from 2020
- MeSH
- Anaplastic Lymphoma Kinase genetics metabolism MeSH
- Lymphoma, Large-Cell, Anaplastic * genetics metabolism pathology MeSH
- Child MeSH
- Adult MeSH
- Janus Kinases metabolism MeSH
- Carcinogenesis genetics MeSH
- Humans MeSH
- Cell Transformation, Neoplastic MeSH
- Signal Transduction * genetics MeSH
- STAT3 Transcription Factor genetics MeSH
- STAT Transcription Factors metabolism MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
Anaplastic large cell lymphoma (ALCL) is an aggressive, CD30+ T cell lymphoma of children and adults. ALK fusion transcripts or mutations in the JAK-STAT pathway are observed in most ALCL tumors, but the mechanisms underlying tumorigenesis are not fully understood. Here, we show that dysregulated STAT3 in ALCL cooccupies enhancers with master transcription factors BATF3, IRF4, and IKZF1 to form a core regulatory circuit that establishes and maintains the malignant cell state in ALCL. Critical downstream targets of this network in ALCL cells include the protooncogene MYC, which requires active STAT3 to facilitate high levels of MYC transcription. The core autoregulatory transcriptional circuitry activity is reinforced by MYC binding to the enhancer regions associated with STAT3 and each of the core regulatory transcription factors. Thus, activation of STAT3 provides the crucial link between aberrant tyrosine kinase signaling and the core transcriptional machinery that drives tumorigenesis and creates therapeutic vulnerabilities in ALCL.
Broad Institute of Harvard and Massachusetts Institute of Technology Cambridge MA 02141 USA
Department of Computational Biology St Jude Children's Research Hospital Memphis TN 38105 USA
Department of Pediatric Oncology and Hematology Addenbrooke's Hospital Cambridge UK
Division of Molecular Oncology St Jude Children's Research Hospital Memphis TN 38105 USA
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24006697
- 003
- CZ-PrNML
- 005
- 20240423155439.0
- 007
- ta
- 008
- 240412s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.xcrm.2024.101472 $2 doi
- 035 __
- $a (PubMed)38508140
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Prutsch, Nicole $u Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA
- 245 10
- $a STAT3 couples activated tyrosine kinase signaling to the oncogenic core transcriptional regulatory circuitry of anaplastic large cell lymphoma / $c N. Prutsch, S. He, A. Berezovskaya, AD. Durbin, NV. Dharia, KA. Maher, JD. Matthews, L. Hare, SD. Turner, K. Stegmaier, L. Kenner, O. Merkel, AT. Look, BJ. Abraham, MW. Zimmerman
- 520 9_
- $a Anaplastic large cell lymphoma (ALCL) is an aggressive, CD30+ T cell lymphoma of children and adults. ALK fusion transcripts or mutations in the JAK-STAT pathway are observed in most ALCL tumors, but the mechanisms underlying tumorigenesis are not fully understood. Here, we show that dysregulated STAT3 in ALCL cooccupies enhancers with master transcription factors BATF3, IRF4, and IKZF1 to form a core regulatory circuit that establishes and maintains the malignant cell state in ALCL. Critical downstream targets of this network in ALCL cells include the protooncogene MYC, which requires active STAT3 to facilitate high levels of MYC transcription. The core autoregulatory transcriptional circuitry activity is reinforced by MYC binding to the enhancer regions associated with STAT3 and each of the core regulatory transcription factors. Thus, activation of STAT3 provides the crucial link between aberrant tyrosine kinase signaling and the core transcriptional machinery that drives tumorigenesis and creates therapeutic vulnerabilities in ALCL.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a dítě $7 D002648
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a signální transdukce $x genetika $7 D015398
- 650 _2
- $a anaplastická lymfomová kináza $x genetika $x metabolismus $7 D000077548
- 650 12
- $a anaplastický velkobuněčný lymfom $x genetika $x metabolismus $x patologie $7 D017728
- 650 _2
- $a Janus kinasy $x metabolismus $7 D053612
- 650 _2
- $a transkripční faktory STAT $x metabolismus $7 D050791
- 650 _2
- $a nádorová transformace buněk $7 D002471
- 650 _2
- $a karcinogeneze $x genetika $7 D063646
- 650 _2
- $a transkripční faktor STAT3 $x genetika $7 D050796
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a He, Shuning $u Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA
- 700 1_
- $a Berezovskaya, Alla $u Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA
- 700 1_
- $a Durbin, Adam D $u Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- 700 1_
- $a Dharia, Neekesh V $u Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02141, USA
- 700 1_
- $a Maher, Kelsey A $u Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- 700 1_
- $a Matthews, Jamie D $u Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- 700 1_
- $a Hare, Lucy $u Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Department of Pediatric Oncology and Hematology, Addenbrooke's Hospital, Cambridge, UK
- 700 1_
- $a Turner, Suzanne D $u Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Faculty of Medicine, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Stegmaier, Kimberly $u Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02141, USA
- 700 1_
- $a Kenner, Lukas $u Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
- 700 1_
- $a Merkel, Olaf $u Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
- 700 1_
- $a Look, A Thomas $u Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA. Electronic address: thomas_look@dfci.harvard.edu
- 700 1_
- $a Abraham, Brian J $u Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. Electronic address: brian.abraham@stjude.org
- 700 1_
- $a Zimmerman, Mark W $u Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA. Electronic address: mwz2002@gmail.com
- 773 0_
- $w MED00205574 $t Cell reports. Medicine $x 2666-3791 $g Roč. 5, č. 3 (2024), s. 101472
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38508140 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240412 $b ABA008
- 991 __
- $a 20240423155436 $b ABA008
- 999 __
- $a ok $b bmc $g 2080977 $s 1216464
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 5 $c 3 $d 101472 $e 20240319 $i 2666-3791 $m Cell reports. Medicine $n Cell Rep Med $x MED00205574
- LZP __
- $a Pubmed-20240412