• Je něco špatně v tomto záznamu ?

Gait disorder classification based on effective feature selection and unsupervised methodology

M. Shayestegan, J. Kohout, K. Trnková, M. Chovanec, J. Mareš

. 2024 ; 170 (-) : 108077. [pub] 20240130

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24006889

In gait stability analysis, patients suffering from dysfunction problems are impacted by shifts in their dynamic balance. Monitoring the patients' progress is important for allowing physicians and patients to observe the rehabilitation process accurately. In this study, we designed a new methodology for classifying gait disorders to quantify patients' progress. The dataset in this study includes 84 measurements of 37 patients based on a physician's opinion. In this study, the system, which includes a Kinect camera to observe and store the frames of patients walking down a hallway, a key-point detector to detect the skeletal key points, and an encoder transformer classifier network integrated with generator-discriminator networks (ET-GD), is designed to evaluate the classification of gait dysfunction. The detector extracts the skeletal key points of patients. After feature engineering, the selected high-level features are fed into the proposed neural network to analyse patient movement and perform the final evaluation of gait dysfunction. The proposed network is inspired by the 1D encoder transformer, which is integrated with two main networks: a network for classification and a network to generate fake output data similar to the input data. Furthermore, we used a discriminator structure to distinguish between the actual data (input) and fake data (generated data). Due to the multi-structural networks in the proposed method, multi-loss functions need to be optimised; this increases the accuracy of the encoder transformer classifier.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24006889
003      
CZ-PrNML
005      
20240423155545.0
007      
ta
008      
240412e20240130xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.compbiomed.2024.108077 $2 doi
035    __
$a (PubMed)38306777
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Shayestegan, Mohsen $u University of Pardubice, Faculty of Electrical Engineering and Informatics, Nam. Cs. Legii 565, Pardubice, 530 02, Czech Republic. Electronic address: mohsen.shayestegan@upce.cz
245    10
$a Gait disorder classification based on effective feature selection and unsupervised methodology / $c M. Shayestegan, J. Kohout, K. Trnková, M. Chovanec, J. Mareš
520    9_
$a In gait stability analysis, patients suffering from dysfunction problems are impacted by shifts in their dynamic balance. Monitoring the patients' progress is important for allowing physicians and patients to observe the rehabilitation process accurately. In this study, we designed a new methodology for classifying gait disorders to quantify patients' progress. The dataset in this study includes 84 measurements of 37 patients based on a physician's opinion. In this study, the system, which includes a Kinect camera to observe and store the frames of patients walking down a hallway, a key-point detector to detect the skeletal key points, and an encoder transformer classifier network integrated with generator-discriminator networks (ET-GD), is designed to evaluate the classification of gait dysfunction. The detector extracts the skeletal key points of patients. After feature engineering, the selected high-level features are fed into the proposed neural network to analyse patient movement and perform the final evaluation of gait dysfunction. The proposed network is inspired by the 1D encoder transformer, which is integrated with two main networks: a network for classification and a network to generate fake output data similar to the input data. Furthermore, we used a discriminator structure to distinguish between the actual data (input) and fake data (generated data). Due to the multi-structural networks in the proposed method, multi-loss functions need to be optimised; this increases the accuracy of the encoder transformer classifier.
650    _2
$a lidé $7 D006801
650    12
$a chůze (způsob) $7 D005684
650    _2
$a chůze $7 D016138
650    12
$a pohybové poruchy $7 D009069
650    _2
$a neuronové sítě (počítačové) $7 D016571
650    _2
$a analýza chůze $7 D000077107
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kohout, Jan $u University of Chemistry and Technology Prague, Czech Republic, Department of Mathematics, Informatics and Cybernetics, Technická 1905/5, Prague, 166 28, Czech Republic. Electronic address: jan.kohout@vscht.cz
700    1_
$a Trnková, Kateřina $u Charles University Prague, 3rd Faculty of Medicine, Department of Otorhinolaryngology, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Prague, 100 34, Czech Republic. Electronic address: katerina.trnkova@fnkv.cz
700    1_
$a Chovanec, Martin $u Charles University Prague, 3rd Faculty of Medicine, Department of Otorhinolaryngology, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Prague, 100 34, Czech Republic. Electronic address: martin.chovanec@fnkv.cz
700    1_
$a Mareš, Jan $u University of Pardubice, Faculty of Electrical Engineering and Informatics, Nam. Cs. Legii 565, Pardubice, 530 02, Czech Republic; University of Chemistry and Technology Prague, Czech Republic, Department of Mathematics, Informatics and Cybernetics, Technická 1905/5, Prague, 166 28, Czech Republic. Electronic address: jan.mares@vscht.cz
773    0_
$w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 170 (20240130), s. 108077
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38306777 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423155541 $b ABA008
999    __
$a ok $b bmc $g 2081079 $s 1216656
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 170 $c - $d 108077 $e 20240130 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
LZP    __
$a Pubmed-20240412

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...