-
Je něco špatně v tomto záznamu ?
Gait disorder classification based on effective feature selection and unsupervised methodology
M. Shayestegan, J. Kohout, K. Trnková, M. Chovanec, J. Mareš
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- analýza chůze MeSH
- chůze (způsob) * MeSH
- chůze MeSH
- lidé MeSH
- neuronové sítě (počítačové) MeSH
- pohybové poruchy * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In gait stability analysis, patients suffering from dysfunction problems are impacted by shifts in their dynamic balance. Monitoring the patients' progress is important for allowing physicians and patients to observe the rehabilitation process accurately. In this study, we designed a new methodology for classifying gait disorders to quantify patients' progress. The dataset in this study includes 84 measurements of 37 patients based on a physician's opinion. In this study, the system, which includes a Kinect camera to observe and store the frames of patients walking down a hallway, a key-point detector to detect the skeletal key points, and an encoder transformer classifier network integrated with generator-discriminator networks (ET-GD), is designed to evaluate the classification of gait dysfunction. The detector extracts the skeletal key points of patients. After feature engineering, the selected high-level features are fed into the proposed neural network to analyse patient movement and perform the final evaluation of gait dysfunction. The proposed network is inspired by the 1D encoder transformer, which is integrated with two main networks: a network for classification and a network to generate fake output data similar to the input data. Furthermore, we used a discriminator structure to distinguish between the actual data (input) and fake data (generated data). Due to the multi-structural networks in the proposed method, multi-loss functions need to be optimised; this increases the accuracy of the encoder transformer classifier.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24006889
- 003
- CZ-PrNML
- 005
- 20240423155545.0
- 007
- ta
- 008
- 240412e20240130xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.compbiomed.2024.108077 $2 doi
- 035 __
- $a (PubMed)38306777
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Shayestegan, Mohsen $u University of Pardubice, Faculty of Electrical Engineering and Informatics, Nam. Cs. Legii 565, Pardubice, 530 02, Czech Republic. Electronic address: mohsen.shayestegan@upce.cz
- 245 10
- $a Gait disorder classification based on effective feature selection and unsupervised methodology / $c M. Shayestegan, J. Kohout, K. Trnková, M. Chovanec, J. Mareš
- 520 9_
- $a In gait stability analysis, patients suffering from dysfunction problems are impacted by shifts in their dynamic balance. Monitoring the patients' progress is important for allowing physicians and patients to observe the rehabilitation process accurately. In this study, we designed a new methodology for classifying gait disorders to quantify patients' progress. The dataset in this study includes 84 measurements of 37 patients based on a physician's opinion. In this study, the system, which includes a Kinect camera to observe and store the frames of patients walking down a hallway, a key-point detector to detect the skeletal key points, and an encoder transformer classifier network integrated with generator-discriminator networks (ET-GD), is designed to evaluate the classification of gait dysfunction. The detector extracts the skeletal key points of patients. After feature engineering, the selected high-level features are fed into the proposed neural network to analyse patient movement and perform the final evaluation of gait dysfunction. The proposed network is inspired by the 1D encoder transformer, which is integrated with two main networks: a network for classification and a network to generate fake output data similar to the input data. Furthermore, we used a discriminator structure to distinguish between the actual data (input) and fake data (generated data). Due to the multi-structural networks in the proposed method, multi-loss functions need to be optimised; this increases the accuracy of the encoder transformer classifier.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a chůze (způsob) $7 D005684
- 650 _2
- $a chůze $7 D016138
- 650 12
- $a pohybové poruchy $7 D009069
- 650 _2
- $a neuronové sítě (počítačové) $7 D016571
- 650 _2
- $a analýza chůze $7 D000077107
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kohout, Jan $u University of Chemistry and Technology Prague, Czech Republic, Department of Mathematics, Informatics and Cybernetics, Technická 1905/5, Prague, 166 28, Czech Republic. Electronic address: jan.kohout@vscht.cz
- 700 1_
- $a Trnková, Kateřina $u Charles University Prague, 3rd Faculty of Medicine, Department of Otorhinolaryngology, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Prague, 100 34, Czech Republic. Electronic address: katerina.trnkova@fnkv.cz
- 700 1_
- $a Chovanec, Martin $u Charles University Prague, 3rd Faculty of Medicine, Department of Otorhinolaryngology, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Prague, 100 34, Czech Republic. Electronic address: martin.chovanec@fnkv.cz
- 700 1_
- $a Mareš, Jan $u University of Pardubice, Faculty of Electrical Engineering and Informatics, Nam. Cs. Legii 565, Pardubice, 530 02, Czech Republic; University of Chemistry and Technology Prague, Czech Republic, Department of Mathematics, Informatics and Cybernetics, Technická 1905/5, Prague, 166 28, Czech Republic. Electronic address: jan.mares@vscht.cz
- 773 0_
- $w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 170 (20240130), s. 108077
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38306777 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240412 $b ABA008
- 991 __
- $a 20240423155541 $b ABA008
- 999 __
- $a ok $b bmc $g 2081079 $s 1216656
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 170 $c - $d 108077 $e 20240130 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
- LZP __
- $a Pubmed-20240412