Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Validated WGS and WES protocols proved saliva-derived gDNA as an equivalent to blood-derived gDNA for clinical and population genomic analyses

K. Kvapilova, P. Misenko, J. Radvanszky, O. Brzon, J. Budis, J. Gazdarica, O. Pos, M. Korabecna, M. Kasny, T. Szemes, P. Kvapil, J. Paces, Z. Kozmik

. 2024 ; 25 (1) : 187. [pub] 20240217

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24007102

BACKGROUND: Whole exome sequencing (WES) and whole genome sequencing (WGS) have become standard methods in human clinical diagnostics as well as in population genomics (POPGEN). Blood-derived genomic DNA (gDNA) is routinely used in the clinical environment. Conversely, many POPGEN studies and commercial tests benefit from easy saliva sampling. Here, we evaluated the quality of variant call sets and the level of genotype concordance of single nucleotide variants (SNVs) and small insertions and deletions (indels) for WES and WGS using paired blood- and saliva-derived gDNA isolates employing genomic reference-based validated protocols. METHODS: The genomic reference standard Coriell NA12878 was repeatedly analyzed using optimized WES and WGS protocols, and data calls were compared with the truth dataset published by the Genome in a Bottle Consortium. gDNA was extracted from the paired blood and saliva samples of 10 participants and processed using the same protocols. A comparison of paired blood-saliva call sets was performed in the context of WGS and WES genomic reference-based technical validation results. RESULTS: The quality pattern of called variants obtained from genomic-reference-based technical replicates correlates with data calls of paired blood-saliva-derived samples in all levels of tested examinations despite a higher rate of non-human contamination found in the saliva samples. The F1 score of 10 blood-to-saliva-derived comparisons ranged between 0.8030-0.9998 for SNVs and between 0.8883-0.9991 for small-indels in the case of the WGS protocol, and between 0.8643-0.999 for SNVs and between 0.7781-1.000 for small-indels in the case of the WES protocol. CONCLUSION: Saliva may be considered an equivalent material to blood for genetic analysis for both WGS and WES under strict protocol conditions. The accuracy of sequencing metrics and variant-detection accuracy is not affected by choosing saliva as the gDNA source instead of blood but much more significantly by the genomic context, variant types, and the sequencing technology used.

000      
00000naa a2200000 a 4500
001      
bmc24007102
003      
CZ-PrNML
005      
20240423155724.0
007      
ta
008      
240412s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12864-024-10080-0 $2 doi
035    __
$a (PubMed)38365587
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Kvapilova, Katerina $u Faculty of Science, Charles University, Albertov 6, Prague, 128 00, Czech Republic. kvapilova@iabio.eu $u Institute of Applied Biotechnologies a.s, Služeb 4, Prague, 108 00, Czech Republic. kvapilova@iabio.eu
245    10
$a Validated WGS and WES protocols proved saliva-derived gDNA as an equivalent to blood-derived gDNA for clinical and population genomic analyses / $c K. Kvapilova, P. Misenko, J. Radvanszky, O. Brzon, J. Budis, J. Gazdarica, O. Pos, M. Korabecna, M. Kasny, T. Szemes, P. Kvapil, J. Paces, Z. Kozmik
520    9_
$a BACKGROUND: Whole exome sequencing (WES) and whole genome sequencing (WGS) have become standard methods in human clinical diagnostics as well as in population genomics (POPGEN). Blood-derived genomic DNA (gDNA) is routinely used in the clinical environment. Conversely, many POPGEN studies and commercial tests benefit from easy saliva sampling. Here, we evaluated the quality of variant call sets and the level of genotype concordance of single nucleotide variants (SNVs) and small insertions and deletions (indels) for WES and WGS using paired blood- and saliva-derived gDNA isolates employing genomic reference-based validated protocols. METHODS: The genomic reference standard Coriell NA12878 was repeatedly analyzed using optimized WES and WGS protocols, and data calls were compared with the truth dataset published by the Genome in a Bottle Consortium. gDNA was extracted from the paired blood and saliva samples of 10 participants and processed using the same protocols. A comparison of paired blood-saliva call sets was performed in the context of WGS and WES genomic reference-based technical validation results. RESULTS: The quality pattern of called variants obtained from genomic-reference-based technical replicates correlates with data calls of paired blood-saliva-derived samples in all levels of tested examinations despite a higher rate of non-human contamination found in the saliva samples. The F1 score of 10 blood-to-saliva-derived comparisons ranged between 0.8030-0.9998 for SNVs and between 0.8883-0.9991 for small-indels in the case of the WGS protocol, and between 0.8643-0.999 for SNVs and between 0.7781-1.000 for small-indels in the case of the WES protocol. CONCLUSION: Saliva may be considered an equivalent material to blood for genetic analysis for both WGS and WES under strict protocol conditions. The accuracy of sequencing metrics and variant-detection accuracy is not affected by choosing saliva as the gDNA source instead of blood but much more significantly by the genomic context, variant types, and the sequencing technology used.
650    _2
$a lidé $7 D006801
650    _2
$a sekvenování exomu $7 D000073359
650    12
$a sliny $7 D012463
650    12
$a metagenomika $7 D056186
650    _2
$a exom $7 D059472
650    _2
$a genom lidský $7 D015894
650    _2
$a sekvenování celého genomu $7 D000073336
650    _2
$a genomika $7 D023281
650    _2
$a DNA $x genetika $7 D004247
655    _2
$a časopisecké články $7 D016428
700    1_
$a Misenko, Pavol $u Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
700    1_
$a Radvanszky, Jan $u Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia $u Institute of Clinical and Translational Research, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, 845 05, Slovakia $u Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 3278/6, Karlova Ves, Bratislava, 841 04, Slovakia $u Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
700    1_
$a Brzon, Ondrej $u Institute of Applied Biotechnologies a.s, Služeb 4, Prague, 108 00, Czech Republic
700    1_
$a Budis, Jaroslav $u Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia $u Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia $u Slovak Centre for Scientific and Technical Information, Staré Mesto, Lamačská Cesta 8A, Bratislava, 811 04, Slovakia
700    1_
$a Gazdarica, Juraj $u Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia $u Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia $u Slovak Centre for Scientific and Technical Information, Staré Mesto, Lamačská Cesta 8A, Bratislava, 811 04, Slovakia
700    1_
$a Pos, Ondrej $u Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia $u Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
700    1_
$a Korabecna, Marie $u Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, Prague, 128 00, Czech Republic
700    1_
$a Kasny, Martin $u Institute of Applied Biotechnologies a.s, Služeb 4, Prague, 108 00, Czech Republic $u Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
700    1_
$a Szemes, Tomas $u Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia $u Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 3278/6, Karlova Ves, Bratislava, 841 04, Slovakia $u Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
700    1_
$a Kvapil, Petr $u Institute of Applied Biotechnologies a.s, Služeb 4, Prague, 108 00, Czech Republic
700    1_
$a Paces, Jan $u Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
700    1_
$a Kozmik, Zbynek $u Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
773    0_
$w MED00008181 $t BMC genomics $x 1471-2164 $g Roč. 25, č. 1 (2024), s. 187
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38365587 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423155721 $b ABA008
999    __
$a ok $b bmc $g 2081225 $s 1216869
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 25 $c 1 $d 187 $e 20240217 $i 1471-2164 $m BMC genomics $n BMC Genomics $x MED00008181
LZP    __
$a Pubmed-20240412

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...