PURPOSE: We set out to develop a publicly available tool that could accurately diagnose spinal muscular atrophy (SMA) in exome, genome, or panel sequencing data sets aligned to a GRCh37, GRCh38, or T2T reference genome. METHODS: The SMA Finder algorithm detects the most common genetic causes of SMA by evaluating reads that overlap the c.840 position of the SMN1 and SMN2 paralogs. It uses these reads to determine whether an individual most likely has 0 functional copies of SMN1. RESULTS: We developed SMA Finder and evaluated it on 16,626 exomes and 3911 genomes from the Broad Institute Center for Mendelian Genomics, 1157 exomes and 8762 panel samples from Tartu University Hospital, and 198,868 exomes and 198,868 genomes from the UK Biobank. SMA Finder's false-positive rate was below 1 in 200,000 samples, its positive predictive value was greater than 96%, and its true-positive rate was 29 out of 29. Most of these SMA diagnoses had initially been clinically misdiagnosed as limb-girdle muscular dystrophy. CONCLUSION: Our extensive evaluation of SMA Finder on exome, genome, and panel sequencing samples found it to have nearly 100% accuracy and demonstrated its ability to reduce diagnostic delays, particularly in individuals with milder subtypes of SMA. Given this accuracy, the common misdiagnoses identified here, the widespread availability of clinical confirmatory testing for SMA, and the existence of treatment options, we propose that it is time to add SMN1 to the American College of Medical Genetics list of genes with reportable secondary findings after genome and exome sequencing.
- MeSH
- Algorithms MeSH
- Exome genetics MeSH
- Genome, Human genetics MeSH
- Genomics methods MeSH
- Humans MeSH
- Survival of Motor Neuron 1 Protein genetics MeSH
- Survival of Motor Neuron 2 Protein genetics MeSH
- Sequence Analysis, DNA methods MeSH
- Exome Sequencing MeSH
- Muscular Atrophy, Spinal * genetics diagnosis MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.5% genomes), and performed systematic reanalysis for 6,447 individuals (3,592 male, 2,855 female) with previously undiagnosed rare diseases from 6,004 families. We established a collaborative, two-level expert review infrastructure that allowed a genetic diagnosis in 506 (8.4%) families. Of 552 disease-causing variants identified, 464 (84.1%) were single-nucleotide variants or short insertions/deletions. These variants were either located in recently published novel disease genes (n = 67), recently reclassified in ClinVar (n = 187) or reclassified by consensus expert decision within Solve-RD (n = 210). Bespoke bioinformatics analyses identified the remaining 15.9% of causative variants (n = 88). Ad hoc expert review, parallel to the systematic reanalysis, diagnosed 249 (4.1%) additional families for an overall diagnostic yield of 12.6%. The infrastructure and collaborative networks set up by Solve-RD can serve as a blueprint for future further scalable international efforts. The resource is open to the global rare-disease community, allowing phenotype, variant and gene queries, as well as genome-wide discoveries.
- MeSH
- Databases, Genetic MeSH
- Exome genetics MeSH
- Genome, Human genetics MeSH
- Genomics * methods MeSH
- Humans MeSH
- Pedigree MeSH
- Computational Biology methods MeSH
- Rare Diseases * genetics diagnosis MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
BACKGROUND: Whole exome sequencing (WES) and whole genome sequencing (WGS) have become standard methods in human clinical diagnostics as well as in population genomics (POPGEN). Blood-derived genomic DNA (gDNA) is routinely used in the clinical environment. Conversely, many POPGEN studies and commercial tests benefit from easy saliva sampling. Here, we evaluated the quality of variant call sets and the level of genotype concordance of single nucleotide variants (SNVs) and small insertions and deletions (indels) for WES and WGS using paired blood- and saliva-derived gDNA isolates employing genomic reference-based validated protocols. METHODS: The genomic reference standard Coriell NA12878 was repeatedly analyzed using optimized WES and WGS protocols, and data calls were compared with the truth dataset published by the Genome in a Bottle Consortium. gDNA was extracted from the paired blood and saliva samples of 10 participants and processed using the same protocols. A comparison of paired blood-saliva call sets was performed in the context of WGS and WES genomic reference-based technical validation results. RESULTS: The quality pattern of called variants obtained from genomic-reference-based technical replicates correlates with data calls of paired blood-saliva-derived samples in all levels of tested examinations despite a higher rate of non-human contamination found in the saliva samples. The F1 score of 10 blood-to-saliva-derived comparisons ranged between 0.8030-0.9998 for SNVs and between 0.8883-0.9991 for small-indels in the case of the WGS protocol, and between 0.8643-0.999 for SNVs and between 0.7781-1.000 for small-indels in the case of the WES protocol. CONCLUSION: Saliva may be considered an equivalent material to blood for genetic analysis for both WGS and WES under strict protocol conditions. The accuracy of sequencing metrics and variant-detection accuracy is not affected by choosing saliva as the gDNA source instead of blood but much more significantly by the genomic context, variant types, and the sequencing technology used.
- MeSH
- DNA genetics MeSH
- Exome MeSH
- Genome, Human MeSH
- Genomics MeSH
- Humans MeSH
- Metagenomics * MeSH
- Whole Genome Sequencing MeSH
- Exome Sequencing MeSH
- Saliva * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Rationale: Idiopathic pulmonary fibrosis (IPF) is a rare, irreversible, and progressive disease of the lungs. Common genetic variants, in addition to nongenetic factors, have been consistently associated with IPF. Rare variants identified by candidate gene, family-based, and exome studies have also been reported to associate with IPF. However, the extent to which rare variants, genome-wide, may contribute to the risk of IPF remains unknown. Objectives: We used whole-genome sequencing to investigate the role of rare variants, genome-wide, on IPF risk. Methods: As part of the Trans-Omics for Precision Medicine Program, we sequenced 2,180 cases of IPF. Association testing focused on the aggregated effect of rare variants (minor allele frequency ⩽0.01) within genes or regions. We also identified individual rare variants that are influential within genes and estimated the heritability of IPF on the basis of rare and common variants. Measurements and Main Results: Rare variants in both TERT and RTEL1 were significantly associated with IPF. A single rare variant in each of the TERT and RTEL1 genes was found to consistently influence the aggregated test statistics. There was no significant evidence of association with other previously reported rare variants. The SNP heritability of IPF was estimated to be 32% (SE = 3%). Conclusions: Rare variants within the TERT and RTEL1 genes and well-established common variants have the largest contribution to IPF risk overall. Efforts in risk profiling or the development of therapies for IPF that focus on TERT, RTEL1, common variants, and environmental risk factors are likely to have the largest impact on this complex disease.
INTRODUCTION: Although shared genetic factors have been previously reported between dystonia and other neurologic conditions, no sequencing study exploring such links is available. In a large dystonic cohort, we aimed at analyzing the proportions of causative variants in genes associated with disease categories other than dystonia. METHODS: Gene findings related to whole-exome sequencing-derived diagnoses in 1100 dystonia index cases were compared with expert-curated molecular testing panels for ataxia, parkinsonism, spastic paraplegia, neuropathy, epilepsy, and intellectual disability. RESULTS: Among 220 diagnosed patients, 21% had variants in ataxia-linked genes; 15% in parkinsonism-linked genes; 15% in spastic-paraplegia-linked genes; 12% in neuropathy-linked genes; 32% in epilepsy-linked genes; and 65% in intellectual-disability-linked genes. Most diagnosed presentations (80%) were related to genes listed in ≥1 studied panel; 71% of the involved loci were found in the non-dystonia panels but not in an expert-curated gene list for dystonia. CONCLUSIONS: Our study indicates a convergence in the genetics of dystonia and other neurologic phenotypes, informing diagnostic evaluation strategies and pathophysiological considerations.
In 2016, guidelines for diagnostic Next Generation Sequencing (NGS) have been published by EuroGentest in order to assist laboratories in the implementation and accreditation of NGS in a diagnostic setting. These guidelines mainly focused on Whole Exome Sequencing (WES) and targeted (gene panels) sequencing detecting small germline variants (Single Nucleotide Variants (SNVs) and insertions/deletions (indels)). Since then, Whole Genome Sequencing (WGS) has been increasingly introduced in the diagnosis of rare diseases as WGS allows the simultaneous detection of SNVs, Structural Variants (SVs) and other types of variants such as repeat expansions. The use of WGS in diagnostics warrants the re-evaluation and update of previously published guidelines. This work was jointly initiated by EuroGentest and the Horizon2020 project Solve-RD. Statements from the 2016 guidelines have been reviewed in the context of WGS and updated where necessary. The aim of these recommendations is primarily to list the points to consider for clinical (laboratory) geneticists, bioinformaticians, and (non-)geneticists, to provide technical advice, aid clinical decision-making and the reporting of the results.
- MeSH
- Exome * MeSH
- Genome, Human * MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Whole Genome Sequencing MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Rare Diseases diagnosis genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
Nestr.
Mentální retardace a poruchy autistického spektra jsou z hlediska genetiky velkou heterogenní skupinou mnoha vzácných onemocnění. Budou sekvenovány exomy u asi 100 rodin s postiženými dětmi se sporadickým i familiálním výskytem. Varianty budou hodnoceny podle různých modelů dědičnosti a kritérií pro posouzení patogenity. Budou odhaleny varianty v již validovaných kauzálních genech, které budou v rodinách klinicky využity, a varianty v kandidátních genech, u kterých budou hledáni v jiných kohortách ve světě pacienti s variantami v týchž genech. Jejich existence, podobnost fenotypů a funkční studie mohou vést k validaci nových kauzálních genů. Popis nových pacientů s variantami ve vzácně mutovaných genech upřesní korelaci genotyp-fenotyp. Bude sestavena databáze častých českých benigních populačních variant. Bude porovnána analýza panelů genů, exomů a genomů. Optimalizace stávajících laboratorních a bioinformatických postupů a další zkušenosti získané ve výzkumném uspořádání (informovaný souhlas, postoje k nejistotě, incidentalomu atd.) pomohou v zavádění těchto metod do rutinní pra...; From the genetics perspective intellectual disability and autism spectrum disorders are a large heterogeneous group of rare diseases. Exomes will be sequenced in about 100 families with sporadic or familial occurrence of affected children. Variants will be evaluated using all inheritance models and criteria for pathogenicity. Variants in validated causal genes will be found and used clinically in the families. For variants in candidate genes, other patients with variants in the genes will be searched in other cohorts worldwide. Their existence, phenotypic similarity and functional studies can lead to validation of new causal genes. New patients with variants in rarely mutated genes contribute to the genotype-phenotype correlation. A database of common Czech benign population variants will be assembled. Analyses of gene panels, exomes and genomes will be compared. Optimisation of extant pipelines and other experience gained in the research setting (informed consent, attitudes towards uncertainty, incidentalome etc.) will help in the implementation of these methods in routine practi...
- MeSH
- Exome genetics MeSH
- Phenotype MeSH
- Genetic Variation genetics MeSH
- Genetic Testing methods MeSH
- Genotype MeSH
- Humans MeSH
- Intellectual Disability genetics MeSH
- Autism Spectrum Disorder genetics MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Conspectus
- Patologie. Klinická medicína
- NML Fields
- genetika, lékařská genetika
- psychiatrie
- NML Publication type
- závěrečné zprávy o řešení grantu AZV MZ ČR
Up to 40% of neurodevelopmental disorders (NDDs) such as intellectual disability, developmental delay, autism spectrum disorder, and developmental motor abnormalities have a documented underlying monogenic defect, primarily due to de novo variants. Still, the overall burden of de novo variants as well as novel disease genes in NDDs await discovery. We performed parent-offspring trio exome sequencing in 231 individuals with NDDs. Phenotypes were compiled using human phenotype ontology terms. The overall diagnostic yield was 49.8% (n = 115/231) with de novo variants contributing to more than 80% (n = 93/115) of all solved cases. De novo variants affected 72 different-mostly constrained-genes. In addition, we identified putative pathogenic variants in 16 genes not linked to NDDs to date. Reanalysis performed in 80 initially unsolved cases revealed a definitive diagnosis in two additional cases. Our study consolidates the contribution and genetic heterogeneity of de novo variants in NDDs highlighting trio exome sequencing as effective diagnostic tool for NDDs. Besides, we illustrate the potential of a trio-approach for candidate gene discovery and the power of systematic reanalysis of unsolved cases.
- MeSH
- Tertiary Care Centers MeSH
- Child MeSH
- Adult MeSH
- Exome genetics MeSH
- Phenotype MeSH
- Genetic Predisposition to Disease genetics MeSH
- Genetic Variation genetics MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Neurodevelopmental Disorders genetics MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Retrospective Studies MeSH
- Exome Sequencing methods MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
OBJECTIVES: The majority of people with suspected genetic dystonia remain undiagnosed after maximal investigation, implying that a number of causative genes have not yet been recognized. We aimed to investigate this paucity of diagnoses. METHODS: We undertook weighted burden analysis of whole-exome sequencing (WES) data from 138 individuals with unresolved generalized dystonia of suspected genetic etiology, followed by additional case-finding from international databases, first for the gene implicated by the burden analysis (VPS16), and then for other functionally related genes. Electron microscopy was performed on patient-derived cells. RESULTS: Analysis revealed a significant burden for VPS16 (Fisher's exact test p value, 6.9 × 109 ). VPS16 encodes a subunit of the homotypic fusion and vacuole protein sorting (HOPS) complex, which plays a key role in autophagosome-lysosome fusion. A total of 18 individuals harboring heterozygous loss-of-function VPS16 variants, and one with a microdeletion, were identified. These individuals experienced early onset progressive dystonia with predominant cervical, bulbar, orofacial, and upper limb involvement. Some patients had a more complex phenotype with additional neuropsychiatric and/or developmental comorbidities. We also identified biallelic loss-of-function variants in VPS41, another HOPS-complex encoding gene, in an individual with infantile-onset generalized dystonia. Electron microscopy of patient-derived lymphocytes and fibroblasts from both patients with VPS16 and VPS41 showed vacuolar abnormalities suggestive of impaired lysosomal function. INTERPRETATION: Our study strongly supports a role for HOPS complex dysfunction in the pathogenesis of dystonia, although variants in different subunits display different phenotypic and inheritance characteristics. ANN NEUROL 2020;88:867-877.
- MeSH
- Adult MeSH
- Dystonia genetics pathology MeSH
- Exome genetics MeSH
- Fibroblasts pathology MeSH
- Genetic Predisposition to Disease genetics MeSH
- Genetic Variation MeSH
- Middle Aged MeSH
- Humans MeSH
- Lysosomal Storage Diseases genetics pathology MeSH
- Mutation genetics MeSH
- Cost of Illness MeSH
- Pedigree MeSH
- Vesicular Transport Proteins genetics MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- MeSH
- Biopsy MeSH
- Diagnosis, Differential MeSH
- Exome MeSH
- Humans MeSH
- Brain diagnostic imaging MeSH
- Vascular Diseases diagnosis MeSH
- Neuroimaging MeSH
- Vasculitis, Central Nervous System * diagnostic imaging diagnosis genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH