Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Pulse-width modulated temporal interference (PWM-TI) brain stimulation

CE. Luff, P. Dzialecka, E. Acerbo, A. Williamson, N. Grossman

. 2024 ; 17 (1) : 92-103. [pub] 20231223

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
Medical Research Council - United Kingdom

BACKGROUND: Electrical stimulation involving temporal interference of two different kHz frequency sinusoidal electric fields (temporal interference (TI)) enables non-invasive deep brain stimulation, by creating an electric field that is amplitude modulated at the slow difference frequency (within the neural range), at the target brain region. OBJECTIVE: Here, we investigate temporal interference neural stimulation using square, rather than sinusoidal, electric fields that create an electric field that is pulse-width, but not amplitude, modulated at the difference frequency (pulse-width modulated temporal interference, (PWM-TI)). METHODS/RESULTS: We show, using ex-vivo single-cell recordings and in-vivo calcium imaging, that PWM-TI effectively stimulates neural activity at the difference frequency at a similar efficiency to traditional TI. We then demonstrate, using computational modelling, that the PWM stimulation waveform induces amplitude-modulated membrane potential depolarization due to the membrane's intrinsic low-pass filtering property. CONCLUSIONS: PWM-TI can effectively drive neural activity at the difference frequency. The PWM-TI mechanism involves converting an envelope amplitude-fixed PWM field to an amplitude-modulated membrane potential via the low-pass filtering of the passive neural membrane. Unveiling the biophysics underpinning the neural response to complex electric fields may facilitate the development of new brain stimulation strategies with improved precision and efficiency.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24007727
003      
CZ-PrNML
005      
20240423160217.0
007      
ta
008      
240412s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.brs.2023.12.010 $2 doi
035    __
$a (PubMed)38145754
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Luff, Charlotte E $u Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom
245    10
$a Pulse-width modulated temporal interference (PWM-TI) brain stimulation / $c CE. Luff, P. Dzialecka, E. Acerbo, A. Williamson, N. Grossman
520    9_
$a BACKGROUND: Electrical stimulation involving temporal interference of two different kHz frequency sinusoidal electric fields (temporal interference (TI)) enables non-invasive deep brain stimulation, by creating an electric field that is amplitude modulated at the slow difference frequency (within the neural range), at the target brain region. OBJECTIVE: Here, we investigate temporal interference neural stimulation using square, rather than sinusoidal, electric fields that create an electric field that is pulse-width, but not amplitude, modulated at the difference frequency (pulse-width modulated temporal interference, (PWM-TI)). METHODS/RESULTS: We show, using ex-vivo single-cell recordings and in-vivo calcium imaging, that PWM-TI effectively stimulates neural activity at the difference frequency at a similar efficiency to traditional TI. We then demonstrate, using computational modelling, that the PWM stimulation waveform induces amplitude-modulated membrane potential depolarization due to the membrane's intrinsic low-pass filtering property. CONCLUSIONS: PWM-TI can effectively drive neural activity at the difference frequency. The PWM-TI mechanism involves converting an envelope amplitude-fixed PWM field to an amplitude-modulated membrane potential via the low-pass filtering of the passive neural membrane. Unveiling the biophysics underpinning the neural response to complex electric fields may facilitate the development of new brain stimulation strategies with improved precision and efficiency.
650    12
$a mozek $7 D001921
650    _2
$a počítačová simulace $7 D003198
650    _2
$a elektrická stimulace $7 D004558
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Dzialecka, Patrycja $u Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom
700    1_
$a Acerbo, Emma $u Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France; Department of Neurosurgery, Emory University, Atlanta, GA, USA
700    1_
$a Williamson, Adam $u Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France; International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic
700    1_
$a Grossman, Nir $u Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom. Electronic address: nirg@imperial.ac.uk
773    0_
$w MED00166625 $t Brain stimulation $x 1876-4754 $g Roč. 17, č. 1 (2024), s. 92-103
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38145754 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423160214 $b ABA008
999    __
$a ok $b bmc $g 2081608 $s 1217494
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 17 $c 1 $d 92-103 $e 20231223 $i 1876-4754 $m Brain stimulation $n Brain Stimulat $x MED00166625
GRA    __
$p Medical Research Council $2 United Kingdom
LZP    __
$a Pubmed-20240412

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...