-
Something wrong with this record ?
Pulse-width modulated temporal interference (PWM-TI) brain stimulation
CE. Luff, P. Dzialecka, E. Acerbo, A. Williamson, N. Grossman
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Medical Research Council - United Kingdom
NLK
Directory of Open Access Journals
from 2020
ROAD: Directory of Open Access Scholarly Resources
from 2008
- MeSH
- Electric Stimulation MeSH
- Brain * MeSH
- Computer Simulation MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Electrical stimulation involving temporal interference of two different kHz frequency sinusoidal electric fields (temporal interference (TI)) enables non-invasive deep brain stimulation, by creating an electric field that is amplitude modulated at the slow difference frequency (within the neural range), at the target brain region. OBJECTIVE: Here, we investigate temporal interference neural stimulation using square, rather than sinusoidal, electric fields that create an electric field that is pulse-width, but not amplitude, modulated at the difference frequency (pulse-width modulated temporal interference, (PWM-TI)). METHODS/RESULTS: We show, using ex-vivo single-cell recordings and in-vivo calcium imaging, that PWM-TI effectively stimulates neural activity at the difference frequency at a similar efficiency to traditional TI. We then demonstrate, using computational modelling, that the PWM stimulation waveform induces amplitude-modulated membrane potential depolarization due to the membrane's intrinsic low-pass filtering property. CONCLUSIONS: PWM-TI can effectively drive neural activity at the difference frequency. The PWM-TI mechanism involves converting an envelope amplitude-fixed PWM field to an amplitude-modulated membrane potential via the low-pass filtering of the passive neural membrane. Unveiling the biophysics underpinning the neural response to complex electric fields may facilitate the development of new brain stimulation strategies with improved precision and efficiency.
Department of Brain Sciences Imperial College London London United Kingdom
Department of Neurosurgery Emory University Atlanta GA USA
Institut de Neurosciences des Systèmes INSERM UMR_1106 Aix Marseille Université Marseille France
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
UK Dementia Research Institute Imperial College London United Kingdom
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24007727
- 003
- CZ-PrNML
- 005
- 20240423160217.0
- 007
- ta
- 008
- 240412s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.brs.2023.12.010 $2 doi
- 035 __
- $a (PubMed)38145754
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Luff, Charlotte E $u Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom
- 245 10
- $a Pulse-width modulated temporal interference (PWM-TI) brain stimulation / $c CE. Luff, P. Dzialecka, E. Acerbo, A. Williamson, N. Grossman
- 520 9_
- $a BACKGROUND: Electrical stimulation involving temporal interference of two different kHz frequency sinusoidal electric fields (temporal interference (TI)) enables non-invasive deep brain stimulation, by creating an electric field that is amplitude modulated at the slow difference frequency (within the neural range), at the target brain region. OBJECTIVE: Here, we investigate temporal interference neural stimulation using square, rather than sinusoidal, electric fields that create an electric field that is pulse-width, but not amplitude, modulated at the difference frequency (pulse-width modulated temporal interference, (PWM-TI)). METHODS/RESULTS: We show, using ex-vivo single-cell recordings and in-vivo calcium imaging, that PWM-TI effectively stimulates neural activity at the difference frequency at a similar efficiency to traditional TI. We then demonstrate, using computational modelling, that the PWM stimulation waveform induces amplitude-modulated membrane potential depolarization due to the membrane's intrinsic low-pass filtering property. CONCLUSIONS: PWM-TI can effectively drive neural activity at the difference frequency. The PWM-TI mechanism involves converting an envelope amplitude-fixed PWM field to an amplitude-modulated membrane potential via the low-pass filtering of the passive neural membrane. Unveiling the biophysics underpinning the neural response to complex electric fields may facilitate the development of new brain stimulation strategies with improved precision and efficiency.
- 650 12
- $a mozek $7 D001921
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a elektrická stimulace $7 D004558
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Dzialecka, Patrycja $u Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom
- 700 1_
- $a Acerbo, Emma $u Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France; Department of Neurosurgery, Emory University, Atlanta, GA, USA
- 700 1_
- $a Williamson, Adam $u Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France; International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic
- 700 1_
- $a Grossman, Nir $u Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom. Electronic address: nirg@imperial.ac.uk
- 773 0_
- $w MED00166625 $t Brain stimulation $x 1876-4754 $g Roč. 17, č. 1 (2024), s. 92-103
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38145754 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240412 $b ABA008
- 991 __
- $a 20240423160214 $b ABA008
- 999 __
- $a ok $b bmc $g 2081608 $s 1217494
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 17 $c 1 $d 92-103 $e 20231223 $i 1876-4754 $m Brain stimulation $n Brain Stimulat $x MED00166625
- GRA __
- $p Medical Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20240412