-
Je něco špatně v tomto záznamu ?
Developmental effect of RASopathy mutations on neuronal network activity on a chip
EM. Weiss, D. Guhathakurta, A. Petrušková, V. Hundrup, M. Zenker, A. Fejtová
Status neindexováno Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2007
Free Medical Journals
od 2007
PubMed Central
od 2007
Europe PubMed Central
od 2007
ProQuest Central
od 2023-01-01
Open Access Digital Library
od 2007-01-01
Open Access Digital Library
od 2007-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2007
- Publikační typ
- časopisecké články MeSH
RASopathies are a group of genetic disorders caused by mutations in genes encoding components and regulators of the RAS/MAPK signaling pathway, resulting in overactivation of signaling. RASopathy patients exhibit distinctive facial features, cardiopathies, growth and skeletal abnormalities, and varying degrees of neurocognitive impairments including neurodevelopmental delay, intellectual disabilities, or attention deficits. At present, it is unclear how RASopathy mutations cause neurocognitive impairment and what their neuron-specific cellular and network phenotypes are. Here, we investigated the effect of RASopathy mutations on the establishment and functional maturation of neuronal networks. We isolated cortical neurons from RASopathy mouse models, cultured them on multielectrode arrays and performed longitudinal recordings of spontaneous activity in developing networks as well as recordings of evoked responses in mature neurons. To facilitate the analysis of large and complex data sets resulting from long-term multielectrode recordings, we developed MATLAB-based tools for data processing, analysis, and statistical evaluation. Longitudinal analysis of spontaneous network activity revealed a convergent developmental phenotype in neurons carrying the gain-of-function Noonan syndrome-related mutations Ptpn11D61Y and KrasV14l. The phenotype was more pronounced at the earlier time points and faded out over time, suggesting the emergence of compensatory mechanisms during network maturation. Nevertheless, persistent differences in excitatory/inhibitory balance and network excitability were observed in mature networks. This study improves the understanding of the complex relationship between genetic mutations and clinical manifestations in RASopathies by adding insights into functional network processes as an additional piece of the puzzle.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24012582
- 003
- CZ-PrNML
- 005
- 20240726151419.0
- 007
- ta
- 008
- 240723e20240607sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3389/fncel.2024.1388409 $2 doi
- 035 __
- $a (PubMed)38910965
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Weiss, Eva-Maria $u Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- 245 10
- $a Developmental effect of RASopathy mutations on neuronal network activity on a chip / $c EM. Weiss, D. Guhathakurta, A. Petrušková, V. Hundrup, M. Zenker, A. Fejtová
- 520 9_
- $a RASopathies are a group of genetic disorders caused by mutations in genes encoding components and regulators of the RAS/MAPK signaling pathway, resulting in overactivation of signaling. RASopathy patients exhibit distinctive facial features, cardiopathies, growth and skeletal abnormalities, and varying degrees of neurocognitive impairments including neurodevelopmental delay, intellectual disabilities, or attention deficits. At present, it is unclear how RASopathy mutations cause neurocognitive impairment and what their neuron-specific cellular and network phenotypes are. Here, we investigated the effect of RASopathy mutations on the establishment and functional maturation of neuronal networks. We isolated cortical neurons from RASopathy mouse models, cultured them on multielectrode arrays and performed longitudinal recordings of spontaneous activity in developing networks as well as recordings of evoked responses in mature neurons. To facilitate the analysis of large and complex data sets resulting from long-term multielectrode recordings, we developed MATLAB-based tools for data processing, analysis, and statistical evaluation. Longitudinal analysis of spontaneous network activity revealed a convergent developmental phenotype in neurons carrying the gain-of-function Noonan syndrome-related mutations Ptpn11D61Y and KrasV14l. The phenotype was more pronounced at the earlier time points and faded out over time, suggesting the emergence of compensatory mechanisms during network maturation. Nevertheless, persistent differences in excitatory/inhibitory balance and network excitability were observed in mature networks. This study improves the understanding of the complex relationship between genetic mutations and clinical manifestations in RASopathies by adding insights into functional network processes as an additional piece of the puzzle.
- 590 __
- $a NEINDEXOVÁNO
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Guhathakurta, Debarpan $u Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- 700 1_
- $a Petrušková, Aneta $u Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany $u Third Faculty of Medicine, Charles University, Prague, Czechia $u National Institute of Mental Health, Prague, Czechia
- 700 1_
- $a Hundrup, Verena $u Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- 700 1_
- $a Zenker, Martin $u Medical Faculty, Institute of Human Genetics, University Hospital Magdeburg, Otto von Guericke University, Magdeburg, Germany
- 700 1_
- $a Fejtová, Anna $u Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- 773 0_
- $w MED00163312 $t Frontiers in cellular neuroscience $x 1662-5102 $g Roč. 18 (20240607), s. 1388409
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38910965 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240723 $b ABA008
- 991 __
- $a 20240726151412 $b ABA008
- 999 __
- $a ok $b bmc $g 2125412 $s 1224445
- BAS __
- $a 3
- BAS __
- $a PreBMC-PubMed-not-MEDLINE
- BMC __
- $a 2024 $b 18 $c - $d 1388409 $e 20240607 $i 1662-5102 $m Frontiers in cellular neuroscience $n Front Cell Neurosci $x MED00163312
- LZP __
- $a Pubmed-20240723