-
Je něco špatně v tomto záznamu ?
Nanomedicine-mediated recovery of antioxidant glutathione peroxidase activity after oxidative-stress cellular damage: Insights for neurological long COVID
T. Akanchise, B. Angelov, A. Angelova
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
European Regional Development Fund
European Commission
PubMed
38767144
DOI
10.1002/jmv.29680
Knihovny.cz E-zdroje
- MeSH
- antioxidancia * farmakologie MeSH
- COVID-19 metabolismus MeSH
- farmakoterapie COVID-19 * MeSH
- ginkgolidy * farmakologie MeSH
- glutathionperoxidasa * metabolismus MeSH
- laktony farmakologie MeSH
- lidé MeSH
- nanočástice * MeSH
- nanomedicína * metody MeSH
- neurony účinky léků virologie MeSH
- oxidační stres * účinky léků MeSH
- quercetin farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- SARS-CoV-2 účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Nanomedicine for treating post-viral infectious disease syndrome is at an emerging stage. Despite promising results from preclinical studies on conventional antioxidants, their clinical translation as a therapy for treating post-COVID conditions remains challenging. The limitations are due to their low bioavailability, instability, limited transport to the target tissues, and short half-life, requiring frequent and high doses. Activating the immune system during coronavirus (SARS-CoV-2) infection can lead to increased production of reactive oxygen species (ROS), depleted antioxidant reserve, and finally, oxidative stress and neuroinflammation. To tackle this problem, we developed an antioxidant nanotherapy based on lipid (vesicular and cubosomal types) nanoparticles (LNPs) co-encapsulating ginkgolide B and quercetin. The antioxidant-loaded nanocarriers were prepared by a self-assembly method via hydration of a lyophilized mixed thin lipid film. We evaluated the LNPs in a new in vitro model for studying neuronal dysfunction caused by oxidative stress in coronavirus infection. We examined the key downstream signaling pathways that are triggered in response to potassium persulfate (KPS) causing oxidative stress-mediated neurotoxicity. Treatment of neuronally-derived cells (SH-SY5Y) with KPS (50 mM) for 30 min markedly increased mitochondrial dysfunction while depleting the levels of both glutathione peroxidase (GSH-Px) and tyrosine hydroxylase (TH). This led to the sequential activation of apoptotic and necrotic cell death processes, which corroborates with the crucial implication of the two proteins (GSH-Px and TH) in the long-COVID syndrome. Nanomedicine-mediated treatment with ginkgolide B-loaded cubosomes and vesicular LNPs showed minimal cytotoxicity and completely attenuated the KPS-induced cell death process, decreasing apoptosis from 32.6% (KPS) to 19.0% (MO-GB), 12.8% (MO-GB-Quer), 14.8% (DMPC-PEG-GB), and 23.6% (DMPC-PEG-GB-Quer) via free radical scavenging and replenished GSH-Px levels. These findings indicated that GB-LNPs-based nanomedicines may protect against KPS-induced apoptosis by regulating intracellular redox homeostasis.
Extreme Light Infrastructure ERIC Department of Structural Dynamics Dolni Brezany Czech Republic
Université Paris Saclay CNRS Institut Galien Paris Saclay Orsay France
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24014030
- 003
- CZ-PrNML
- 005
- 20240905133448.0
- 007
- ta
- 008
- 240725s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/jmv.29680 $2 doi
- 035 __
- $a (PubMed)38767144
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Akanchise, Thelma $u Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
- 245 10
- $a Nanomedicine-mediated recovery of antioxidant glutathione peroxidase activity after oxidative-stress cellular damage: Insights for neurological long COVID / $c T. Akanchise, B. Angelov, A. Angelova
- 520 9_
- $a Nanomedicine for treating post-viral infectious disease syndrome is at an emerging stage. Despite promising results from preclinical studies on conventional antioxidants, their clinical translation as a therapy for treating post-COVID conditions remains challenging. The limitations are due to their low bioavailability, instability, limited transport to the target tissues, and short half-life, requiring frequent and high doses. Activating the immune system during coronavirus (SARS-CoV-2) infection can lead to increased production of reactive oxygen species (ROS), depleted antioxidant reserve, and finally, oxidative stress and neuroinflammation. To tackle this problem, we developed an antioxidant nanotherapy based on lipid (vesicular and cubosomal types) nanoparticles (LNPs) co-encapsulating ginkgolide B and quercetin. The antioxidant-loaded nanocarriers were prepared by a self-assembly method via hydration of a lyophilized mixed thin lipid film. We evaluated the LNPs in a new in vitro model for studying neuronal dysfunction caused by oxidative stress in coronavirus infection. We examined the key downstream signaling pathways that are triggered in response to potassium persulfate (KPS) causing oxidative stress-mediated neurotoxicity. Treatment of neuronally-derived cells (SH-SY5Y) with KPS (50 mM) for 30 min markedly increased mitochondrial dysfunction while depleting the levels of both glutathione peroxidase (GSH-Px) and tyrosine hydroxylase (TH). This led to the sequential activation of apoptotic and necrotic cell death processes, which corroborates with the crucial implication of the two proteins (GSH-Px and TH) in the long-COVID syndrome. Nanomedicine-mediated treatment with ginkgolide B-loaded cubosomes and vesicular LNPs showed minimal cytotoxicity and completely attenuated the KPS-induced cell death process, decreasing apoptosis from 32.6% (KPS) to 19.0% (MO-GB), 12.8% (MO-GB-Quer), 14.8% (DMPC-PEG-GB), and 23.6% (DMPC-PEG-GB-Quer) via free radical scavenging and replenished GSH-Px levels. These findings indicated that GB-LNPs-based nanomedicines may protect against KPS-induced apoptosis by regulating intracellular redox homeostasis.
- 650 12
- $a oxidační stres $x účinky léků $7 D018384
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a antioxidancia $x farmakologie $7 D000975
- 650 12
- $a nanočástice $7 D053758
- 650 12
- $a ginkgolidy $x farmakologie $7 D046934
- 650 12
- $a nanomedicína $x metody $7 D050997
- 650 12
- $a glutathionperoxidasa $x metabolismus $7 D005979
- 650 12
- $a farmakoterapie COVID-19 $7 D000093485
- 650 _2
- $a COVID-19 $x metabolismus $7 D000086382
- 650 _2
- $a laktony $x farmakologie $7 D007783
- 650 _2
- $a quercetin $x farmakologie $7 D011794
- 650 _2
- $a reaktivní formy kyslíku $x metabolismus $7 D017382
- 650 _2
- $a SARS-CoV-2 $x účinky léků $7 D000086402
- 650 _2
- $a neurony $x účinky léků $x virologie $7 D009474
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Angelov, Borislav $u Extreme Light Infrastructure ERIC, Department of Structural Dynamics, Dolni Brezany, Czech Republic
- 700 1_
- $a Angelova, Angelina $u Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France $1 https://orcid.org/0000000202850637
- 773 0_
- $w MED00002794 $t Journal of medical virology $x 1096-9071 $g Roč. 96, č. 5 (2024), s. e29680
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38767144 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240725 $b ABA008
- 991 __
- $a 20240905133442 $b ABA008
- 999 __
- $a ok $b bmc $g 2143676 $s 1225896
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 96 $c 5 $d e29680 $e - $i 1096-9071 $m Journal of medical virology $n J Med Virol $x MED00002794
- GRA __
- $p European Regional Development Fund
- GRA __
- $p European Commission
- LZP __
- $a Pubmed-20240725