-
Je něco špatně v tomto záznamu ?
Method for cycle detection in sparse, irregularly sampled, long-term neuro-behavioral timeseries: Basis pursuit denoising with polynomial detrending of long-term, inter-ictal epileptiform activity
I. Balzekas, J. Trzasko, G. Yu, TJ. Richner, F. Mivalt, V. Sladky, NM. Gregg, J. Van Gompel, K. Miller, PE. Croarkin, V. Kremen, GA. Worrell
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
T32 GM145408
NIGMS NIH HHS - United States
UH2 NS095495
NINDS NIH HHS - United States
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 2005
Public Library of Science (PLoS)
od 2005
PubMed Central
od 2005
Europe PubMed Central
od 2005
ProQuest Central
od 2005-06-01
Open Access Digital Library
od 2005-01-01
Open Access Digital Library
od 2005-06-01
Open Access Digital Library
od 2005-01-01
Medline Complete (EBSCOhost)
od 2005-06-01
Health & Medicine (ProQuest)
od 2005-06-01
ROAD: Directory of Open Access Scholarly Resources
od 2005
- MeSH
- algoritmy MeSH
- elektroencefalografie metody MeSH
- elektrokortikografie metody MeSH
- epilepsie * patofyziologie diagnóza MeSH
- hipokampus patofyziologie fyziologie MeSH
- lidé MeSH
- modely neurologické MeSH
- počítačové zpracování signálu MeSH
- výpočetní biologie metody MeSH
- záchvaty patofyziologie diagnóza MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Numerous physiological processes are cyclical, but sampling these processes densely enough to perform frequency decomposition and subsequent analyses can be challenging. Mathematical approaches for decomposition and reconstruction of sparsely and irregularly sampled signals are well established but have been under-utilized in physiological applications. We developed a basis pursuit denoising with polynomial detrending (BPWP) model that recovers oscillations and trends from sparse and irregularly sampled timeseries. We validated this model on a unique dataset of long-term inter-ictal epileptiform discharge (IED) rates from human hippocampus recorded with a novel investigational device with continuous local field potential sensing. IED rates have well established circadian and multiday cycles related to sleep, wakefulness, and seizure clusters. Given sparse and irregular samples of IED rates from multi-month intracranial EEG recordings from ambulatory humans, we used BPWP to compute narrowband spectral power and polynomial trend coefficients and identify IED rate cycles in three subjects. In select cases, we propose that random and irregular sampling may be leveraged for frequency decomposition of physiological signals. Trial Registration: NCT03946618.
Department of Neurosurgery Mayo Clinic Rochester Minnesota United States of America
Department of Psychiatry and Psychology Mayo Clinic Rochester Minnesota United States of America
Department of Radiology Mayo Clinic Rochester Minnesota United States of America
Faculty of Biomedical Engineering Czech Technical University Prague Czechia
International Clinic Research Center St Anne's University Research Hospital Brno Czech Republic
Mayo Clinic Alix School of Medicine Rochester Minnesota United States of America
Mayo Clinic Medical Scientist Training Program Rochester Minnesota United States of America
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24014255
- 003
- CZ-PrNML
- 005
- 20240905133940.0
- 007
- ta
- 008
- 240725s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pcbi.1011152 $2 doi
- 035 __
- $a (PubMed)38662736
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Balzekas, Irena $u Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America $u Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America $u Mayo Clinic Alix School of Medicine, Rochester, Minnesota, United States of America $u Mayo Clinic Medical Scientist Training Program, Rochester, Minnesota, United States of America $1 https://orcid.org/0000000327319188
- 245 10
- $a Method for cycle detection in sparse, irregularly sampled, long-term neuro-behavioral timeseries: Basis pursuit denoising with polynomial detrending of long-term, inter-ictal epileptiform activity / $c I. Balzekas, J. Trzasko, G. Yu, TJ. Richner, F. Mivalt, V. Sladky, NM. Gregg, J. Van Gompel, K. Miller, PE. Croarkin, V. Kremen, GA. Worrell
- 520 9_
- $a Numerous physiological processes are cyclical, but sampling these processes densely enough to perform frequency decomposition and subsequent analyses can be challenging. Mathematical approaches for decomposition and reconstruction of sparsely and irregularly sampled signals are well established but have been under-utilized in physiological applications. We developed a basis pursuit denoising with polynomial detrending (BPWP) model that recovers oscillations and trends from sparse and irregularly sampled timeseries. We validated this model on a unique dataset of long-term inter-ictal epileptiform discharge (IED) rates from human hippocampus recorded with a novel investigational device with continuous local field potential sensing. IED rates have well established circadian and multiday cycles related to sleep, wakefulness, and seizure clusters. Given sparse and irregular samples of IED rates from multi-month intracranial EEG recordings from ambulatory humans, we used BPWP to compute narrowband spectral power and polynomial trend coefficients and identify IED rate cycles in three subjects. In select cases, we propose that random and irregular sampling may be leveraged for frequency decomposition of physiological signals. Trial Registration: NCT03946618.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a elektrokortikografie $x metody $7 D000069280
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 12
- $a epilepsie $x patofyziologie $x diagnóza $7 D004827
- 650 _2
- $a hipokampus $x patofyziologie $x fyziologie $7 D006624
- 650 _2
- $a modely neurologické $7 D008959
- 650 _2
- $a záchvaty $x patofyziologie $x diagnóza $7 D012640
- 650 _2
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a ženské pohlaví $7 D005260
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Trzasko, Joshua $u Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
- 700 1_
- $a Yu, Grace $u Mayo Clinic Alix School of Medicine, Rochester, Minnesota, United States of America $u Mayo Clinic Medical Scientist Training Program, Rochester, Minnesota, United States of America
- 700 1_
- $a Richner, Thomas J $u Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
- 700 1_
- $a Mivalt, Filip $u Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America $u International Clinic Research Center, St. Anne's University Research Hospital, Brno, Czech Republic $u Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Czechia
- 700 1_
- $a Sladky, Vladimir $u Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America $u International Clinic Research Center, St. Anne's University Research Hospital, Brno, Czech Republic $u Faculty of Biomedical Engineering, Czech Technical University in Prague, Czechia
- 700 1_
- $a Gregg, Nicholas M $u Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
- 700 1_
- $a Van Gompel, Jamie $u Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, United States of America
- 700 1_
- $a Miller, Kai $u Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, United States of America $1 https://orcid.org/0000000266876422
- 700 1_
- $a Croarkin, Paul E $u Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
- 700 1_
- $a Kremen, Vaclav $u Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America $u Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czechia
- 700 1_
- $a Worrell, Gregory A $u Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America $u Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
- 773 0_
- $w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 20, č. 4 (2024), s. e1011152
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38662736 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240725 $b ABA008
- 991 __
- $a 20240905133934 $b ABA008
- 999 __
- $a ok $b bmc $g 2143819 $s 1226121
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 20 $c 4 $d e1011152 $e 20240425 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
- GRA __
- $a T32 GM145408 $p NIGMS NIH HHS $2 United States
- GRA __
- $a UH2 NS095495 $p NINDS NIH HHS $2 United States
- LZP __
- $a Pubmed-20240725