Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Machine-learning-based prediction of disability progression in multiple sclerosis: An observational, international, multi-center study

E. De Brouwer, T. Becker, L. Werthen-Brabants, P. Dewulf, D. Iliadis, C. Dekeyser, G. Laureys, B. Van Wijmeersch, V. Popescu, T. Dhaene, D. Deschrijver, W. Waegeman, B. De Baets, M. Stock, D. Horakova, F. Patti, G. Izquierdo, S. Eichau, M....

. 2024 ; 3 (7) : e0000533. [pub] 20240725

Status neindexováno Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24018163

BACKGROUND: Disability progression is a key milestone in the disease evolution of people with multiple sclerosis (PwMS). Prediction models of the probability of disability progression have not yet reached the level of trust needed to be adopted in the clinic. A common benchmark to assess model development in multiple sclerosis is also currently lacking. METHODS: Data of adult PwMS with a follow-up of at least three years from 146 MS centers, spread over 40 countries and collected by the MSBase consortium was used. With basic inclusion criteria for quality requirements, it represents a total of 15, 240 PwMS. External validation was performed and repeated five times to assess the significance of the results. Transparent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) guidelines were followed. Confirmed disability progression after two years was predicted, with a confirmation window of six months. Only routinely collected variables were used such as the expanded disability status scale, treatment, relapse information, and MS course. To learn the probability of disability progression, state-of-the-art machine learning models were investigated. The discrimination performance of the models is evaluated with the area under the receiver operator curve (ROC-AUC) and under the precision recall curve (AUC-PR), and their calibration via the Brier score and the expected calibration error. All our preprocessing and model code are available at https://gitlab.com/edebrouwer/ms_benchmark, making this task an ideal benchmark for predicting disability progression in MS. FINDINGS: Machine learning models achieved a ROC-AUC of 0⋅71 ± 0⋅01, an AUC-PR of 0⋅26 ± 0⋅02, a Brier score of 0⋅1 ± 0⋅01 and an expected calibration error of 0⋅07 ± 0⋅04. The history of disability progression was identified as being more predictive for future disability progression than the treatment or relapses history. CONCLUSIONS: Good discrimination and calibration performance on an external validation set is achieved, using only routinely collected variables. This suggests machine-learning models can reliably inform clinicians about the future occurrence of progression and are mature for a clinical impact study.

1 Biostat Hasselt University Belgium

Academic MS Center Zuyderland Department of Neurology Zuyderland Medical Center Sittard Geleen The Netherlands

AHEPA University Hospital Thessaloniki Greece

American University of Beirut Medical Center Beirut Lebanon

Amiri Hospital Sharq Kuwait

AZ Alma Ziekenhuis Sijsele Damme Belgium

Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino Avellino Italy

Azienda Sanitaria Unica Regionale Marche AV3 Macerata Italy

Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases Istanbul Turkey

BAZ County Hospital Miskolc Hungary

Biobix Department of Data Analysis and Mathematical Modelling Ghent University Belgium

Biomedical Research Institute Hasselt University Belgium

Box Hill Hospital Melbourne Australia

Brain Ghent University Belgium

Centro Hospitalar Universitario de Sao Joao Porto Portugal

Charles University Prague and General University Hospital Prague Czech Republic

CHUM and Université de Montreal Montreal Canada

CISSS Chaudière Appalache Levis Canada

Cliniques Universitaires Saint Luc Brussels Belgium

College of Medicine and Health Sciences and Sultan Qaboos University Hospital SQU Oman

Concord Repatriation General Hospital Sydney Australia

CORe Department of Medicine University of Melbourne Melbourne Australia

Data Science Institute Hasselt University Belgium

Department of Medical and Surgical Sciences and Advanced Technologies GF Ingrassia Catania Italy

Department of Neurology Buffalo General Medical Center Buffalo United States of America

Department of Neurology Ghent University Belgium

Dept of Rehabilitation CRFF Mons Luigi Novarese Moncrivello Italy

Emergency Clinical County Hospital Pius Brinzeu Timisoara Romania and University of Medicine and Pharmacy Victor Babes Timisoara Romania

ESAT STADIUS KU Leuven Belgium

Geneva University Hospital Geneva Switzerland

Groene Hart Ziekenhuis Gouda Netherlands

Hospital Clinic de Barcelona Barcelona Spain

Hospital de Galdakao Usansolo Galdakao Spain

Hospital Fernandez Capital Federal Argentina

Hospital General Universitario de Alicante Alicante Spain

Hospital Universitario Donostia San Sebastián Spain

Hospital Universitario Virgen Macarena Sevilla Spain

IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna Italia and Dipartimento di Scienze Biomediche e Neuromotorie Università di Bologna Bologna Italia

Jahn Ferenc Teaching Hospital Budapest Hungary

KERMIT Department of Data Analysis and Mathematical Modelling Ghent University Belgium

King Fahad Specialist Hospital Dammam Khobar Saudi Arabia

Koc University School of Medicine Istanbul Turkey

Liverpool Hospital Sydney Australia

Mater Dei Hospital Msida Malta

Mayis University Samsun Turkey

Melbourne MS Centre Department of Neurology Royal Melbourne Hospital Melbourne Australia

MS center UOC Neurologia ARNAS Garibaldi Catania Italy

Nemocnice Jihlava Jihlava Czech Republic

Neuro Rive Sud Quebec Canada

Noorderhart ziekenhuizen Pelt Belgium

Ospedali Riuniti di Salerno Salerno Italy

Razi Hospital Manouba Tunisia

Royal Hobart Hospital Hobart Australia

Royal Victoria Hospital Belfast United Kingdom

School for Mental Health and Neuroscience Maastricht University Maastricht The Netherlands

Semmelweis University Budapest Budapest Hungary

South Eastern HSC Trust Belfast United Kingdom

St Michael's Hospital Toronto Canada

St Vincent's University Hospital Dublin Ireland

SUMO IDLAB Ghent University imec Belgium

The Alfred Hospital Melbourne Australia

Universidade Metropolitana de Santos Santos Brazil

Universitair MS Centrum Hasselt Pelt Belgium

Universitary Hospital Ghent Ghent Belgium

University Hospital Reina Sofia Cordoba Spain

University Newcastle Newcastle Australia

University of Debrecen Debrecen Hungary

University of Western Australia Nedlands Australia

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24018163
003      
CZ-PrNML
005      
20241016082012.0
007      
ta
008      
241008s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pdig.0000533 $2 doi
035    __
$a (PubMed)39052668
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a De Brouwer, Edward $u ESAT-STADIUS, KU Leuven, Belgium $1 https://orcid.org/0000000306080155
245    10
$a Machine-learning-based prediction of disability progression in multiple sclerosis: An observational, international, multi-center study / $c E. De Brouwer, T. Becker, L. Werthen-Brabants, P. Dewulf, D. Iliadis, C. Dekeyser, G. Laureys, B. Van Wijmeersch, V. Popescu, T. Dhaene, D. Deschrijver, W. Waegeman, B. De Baets, M. Stock, D. Horakova, F. Patti, G. Izquierdo, S. Eichau, M. Girard, A. Prat, A. Lugaresi, P. Grammond, T. Kalincik, R. Alroughani, F. Grand'Maison, O. Skibina, M. Terzi, J. Lechner-Scott, O. Gerlach, SJ. Khoury, E. Cartechini, V. Van Pesch, MJ. Sà, B. Weinstock-Guttman, Y. Blanco, R. Ampapa, D. Spitaleri, C. Solaro, D. Maimone, A. Soysal, G. Iuliano, R. Gouider, T. Castillo-Triviño, JL. Sánchez-Menoyo, G. Laureys, A. van der Walt, J. Oh, E. Aguera-Morales, A. Altintas, A. Al-Asmi, K. de Gans, Y. Fragoso, T. Csepany, S. Hodgkinson, N. Deri, T. Al-Harbi, B. Taylor, O. Gray, P. Lalive, C. Rozsa, C. McGuigan, A. Kermode, AP. Sempere, S. Mihaela, M. Simo, T. Hardy, D. Decoo, S. Hughes, N. Grigoriadis, A. Sas, N. Vella, Y. Moreau, L. Peeters
520    9_
$a BACKGROUND: Disability progression is a key milestone in the disease evolution of people with multiple sclerosis (PwMS). Prediction models of the probability of disability progression have not yet reached the level of trust needed to be adopted in the clinic. A common benchmark to assess model development in multiple sclerosis is also currently lacking. METHODS: Data of adult PwMS with a follow-up of at least three years from 146 MS centers, spread over 40 countries and collected by the MSBase consortium was used. With basic inclusion criteria for quality requirements, it represents a total of 15, 240 PwMS. External validation was performed and repeated five times to assess the significance of the results. Transparent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) guidelines were followed. Confirmed disability progression after two years was predicted, with a confirmation window of six months. Only routinely collected variables were used such as the expanded disability status scale, treatment, relapse information, and MS course. To learn the probability of disability progression, state-of-the-art machine learning models were investigated. The discrimination performance of the models is evaluated with the area under the receiver operator curve (ROC-AUC) and under the precision recall curve (AUC-PR), and their calibration via the Brier score and the expected calibration error. All our preprocessing and model code are available at https://gitlab.com/edebrouwer/ms_benchmark, making this task an ideal benchmark for predicting disability progression in MS. FINDINGS: Machine learning models achieved a ROC-AUC of 0⋅71 ± 0⋅01, an AUC-PR of 0⋅26 ± 0⋅02, a Brier score of 0⋅1 ± 0⋅01 and an expected calibration error of 0⋅07 ± 0⋅04. The history of disability progression was identified as being more predictive for future disability progression than the treatment or relapses history. CONCLUSIONS: Good discrimination and calibration performance on an external validation set is achieved, using only routinely collected variables. This suggests machine-learning models can reliably inform clinicians about the future occurrence of progression and are mature for a clinical impact study.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Becker, Thijs $u I-Biostat, Hasselt University, Belgium $u Data Science Institute, Hasselt University, Belgium
700    1_
$a Werthen-Brabants, Lorin $u SUMO, IDLAB, Ghent University - imec, Belgium
700    1_
$a Dewulf, Pieter $u KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium $1 https://orcid.org/0000000345641672
700    1_
$a Iliadis, Dimitrios $u KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
700    1_
$a Dekeyser, Cathérine $u Department of Neurology, Ghent University, Belgium $u 4 Brain, Ghent University, Belgium $u Biomedical Research Institute, Hasselt University, Belgium
700    1_
$a Laureys, Guy $u Department of Neurology, Ghent University, Belgium $u 4 Brain, Ghent University, Belgium
700    1_
$a Van Wijmeersch, Bart $u Noorderhart ziekenhuizen Pelt, Belgium $u Universitair MS Centrum Hasselt-Pelt, Belgium
700    1_
$a Popescu, Veronica $u Noorderhart ziekenhuizen Pelt, Belgium $u Universitair MS Centrum Hasselt-Pelt, Belgium
700    1_
$a Dhaene, Tom $u SUMO, IDLAB, Ghent University - imec, Belgium
700    1_
$a Deschrijver, Dirk $u SUMO, IDLAB, Ghent University - imec, Belgium
700    1_
$a Waegeman, Willem $u KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
700    1_
$a De Baets, Bernard $u KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
700    1_
$a Stock, Michiel $u KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium $u Biobix, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
700    1_
$a Horakova, Dana $u Charles University in Prague and General University Hospital, Prague, Czech Republic
700    1_
$a Patti, Francesco $u Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, Catania, Italy
700    1_
$a Izquierdo, Guillermo $u Hospital Universitario Virgen Macarena, Sevilla, Spain
700    1_
$a Eichau, Sara $u Hospital Universitario Virgen Macarena, Sevilla, Spain
700    1_
$a Girard, Marc $u CHUM and Université de Montreal, Montreal, Canada
700    1_
$a Prat, Alexandre $u CHUM and Université de Montreal, Montreal, Canada
700    1_
$a Lugaresi, Alessandra $u IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia and Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia $1 https://orcid.org/0000000329025589
700    1_
$a Grammond, Pierre $u CISSS Chaudière-Appalache, Levis, Canada
700    1_
$a Kalincik, Tomas $u Melbourne MS Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia $u CORe, Department of Medicine, University of Melbourne, Melbourne, Australia
700    1_
$a Alroughani, Raed $u Amiri Hospital, Sharq, Kuwait
700    1_
$a Grand'Maison, Francois $u Neuro Rive-Sud, Quebec, Canada
700    1_
$a Skibina, Olga $u Box Hill Hospital, Melbourne, Australia
700    1_
$a Terzi, Murat $u 19 Mayis University, Samsun, Turkey
700    1_
$a Lechner-Scott, Jeannette $u University Newcastle, Newcastle, Australia
700    1_
$a Gerlach, Oliver $u Academic MS Center Zuyderland, Department of Neurology, Zuyderland Medical Center, Sittard-Geleen, The Netherlands $u School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
700    1_
$a Khoury, Samia J $u American University of Beirut Medical Center, Beirut, Lebanon
700    1_
$a Cartechini, Elisabetta $u Azienda Sanitaria Unica Regionale Marche - AV3, Macerata, Italy
700    1_
$a Van Pesch, Vincent $u Cliniques Universitaires Saint-Luc, Brussels, Belgium
700    1_
$a Sà, Maria José $u Centro Hospitalar Universitario de Sao Joao, Porto, Portugal
700    1_
$a Weinstock-Guttman, Bianca $u Department of Neurology, Buffalo General Medical Center, Buffalo, United States of America
700    1_
$a Blanco, Yolanda $u Hospital Clinic de Barcelona, Barcelona, Spain
700    1_
$a Ampapa, Radek $u Nemocnice Jihlava, Jihlava, Czech Republic
700    1_
$a Spitaleri, Daniele $u Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino, Avellino, Italy
700    1_
$a Solaro, Claudio $u Dept. of Rehabilitation, CRFF Mons. Luigi Novarese, Moncrivello, Italy
700    1_
$a Maimone, Davide $u MS center, UOC Neurologia, ARNAS Garibaldi, Catania, Italy
700    1_
$a Soysal, Aysun $u Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases, Istanbul, Turkey
700    1_
$a Iuliano, Gerardo $u Ospedali Riuniti di Salerno, Salerno, Italy
700    1_
$a Gouider, Riadh $u Razi Hospital, Manouba, Tunisia
700    1_
$a Castillo-Triviño, Tamara $u Hospital Universitario Donostia, San Sebastián, Spain $1 https://orcid.org/0000000292493185
700    1_
$a Sánchez-Menoyo, José Luis $u Hospital de Galdakao-Usansolo, Galdakao, Spain
700    1_
$a Laureys, Guy $u Universitary Hospital Ghent, Ghent, Belgium
700    1_
$a van der Walt, Anneke $u The Alfred Hospital, Melbourne, Australia
700    1_
$a Oh, Jiwon $u St. Michael's Hospital, Toronto, Canada
700    1_
$a Aguera-Morales, Eduardo $u University Hospital Reina Sofia, Cordoba, Spain
700    1_
$a Altintas, Ayse $u Koc University, School of Medicine, Istanbul, Turkey
700    1_
$a Al-Asmi, Abdullah $u College of Medicine & Health Sciences and Sultan Qaboos University Hospital, SQU, Oman $1 https://orcid.org/0000000228518157
700    1_
$a de Gans, Koen $u Groene Hart Ziekenhuis, Gouda, Netherlands
700    1_
$a Fragoso, Yara $u Universidade Metropolitana de Santos, Santos, Brazil
700    1_
$a Csepany, Tunde $u University of Debrecen, Debrecen, Hungary $1 https://orcid.org/0000000283053209
700    1_
$a Hodgkinson, Suzanne $u Liverpool Hospital, Sydney, Australia
700    1_
$a Deri, Norma $u Hospital Fernandez, Capital Federal, Argentina
700    1_
$a Al-Harbi, Talal $u King Fahad Specialist Hospital-Dammam, Khobar, Saudi Arabia
700    1_
$a Taylor, Bruce $u Royal Hobart Hospital, Hobart, Australia
700    1_
$a Gray, Orla $u South Eastern HSC Trust, Belfast, United Kingdom
700    1_
$a Lalive, Patrice $u Geneva University Hospital, Geneva, Switzerland
700    1_
$a Rozsa, Csilla $u Jahn Ferenc Teaching Hospital, Budapest, Hungary
700    1_
$a McGuigan, Chris $u St Vincent's University Hospital, Dublin, Ireland
700    1_
$a Kermode, Allan $u University of Western Australia, Nedlands, Australia $1 https://orcid.org/0000000244764016
700    1_
$a Sempere, Angel Pérez $u Hospital General Universitario de Alicante, Alicante, Spain
700    1_
$a Mihaela, Simu $u Emergency Clinical County Hospital Pius Brinzeu, Timisoara, Romania and University of Medicine and Pharmacy Victor Babes, Timisoara, Romania
700    1_
$a Simo, Magdolna $u Semmelweis University Budapest, Budapest, Hungary
700    1_
$a Hardy, Todd $u Concord Repatriation General Hospital, Sydney, Australia
700    1_
$a Decoo, Danny $u AZ Alma Ziekenhuis, Sijsele - Damme, Belgium
700    1_
$a Hughes, Stella $u Royal Victoria Hospital, Belfast, United Kingdom
700    1_
$a Grigoriadis, Nikolaos $u AHEPA University Hospital, Thessaloniki, Greece
700    1_
$a Sas, Attila $u BAZ County Hospital, Miskolc, Hungary
700    1_
$a Vella, Norbert $u Mater Dei Hospital, Msida, Malta
700    1_
$a Moreau, Yves $u ESAT-STADIUS, KU Leuven, Belgium
700    1_
$a Peeters, Liesbet $u Data Science Institute, Hasselt University, Belgium $u Universitair MS Centrum Hasselt-Pelt, Belgium $1 https://orcid.org/0000000260663899
773    0_
$w MED00215633 $t PLOS digital health $x 2767-3170 $g Roč. 3, č. 7 (2024), s. e0000533
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39052668 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241008 $b ABA008
991    __
$a 20241016082007 $b ABA008
999    __
$a ok $b bmc $g 2196482 $s 1230114
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2024 $b 3 $c 7 $d e0000533 $e 20240725 $i 2767-3170 $m PLOS digital health $n PLOS Digit Health $x MED00215633
LZP    __
$a Pubmed-20241008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...