-
Je něco špatně v tomto záznamu ?
Photothermal induction of pyroptosis in malignant glioma spheroids using (16-mercaptohexadecyl)trimethylammonium bromide-modified cationic gold nanorods
M. Zarska, O. Novak, T. Jakubcova, F. Novotny, A. Urbancokova, F. Havel, J. Novak, H. Raabova, K. Musilek, V. Filimonenko, J. Bartek, J. Proska, Z. Hodny
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- buněčné sféroidy účinky léků patologie MeSH
- fototermální terapie MeSH
- gliom * patologie farmakoterapie metabolismus MeSH
- kationty chemie farmakologie MeSH
- kovové nanočástice chemie MeSH
- kvartérní amoniové sloučeniny chemie farmakologie MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové buňky kultivované MeSH
- nanotrubičky * chemie MeSH
- pyroptóza * účinky léků MeSH
- viabilita buněk účinky léků MeSH
- zlato * chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Plasmonic photothermal therapy (PPTT) employing plasmonic gold nanorods (GNRs) presents a potent strategy for eradication of tumors including aggressive brain gliomas. Despite its promise, there is a pressing need for a more comprehensive evaluation of PPTT using sophisticated in vitro models that closely resemble tumor tissues, thereby facilitating the elucidation of therapeutic mechanisms. In this study, we exposed 3D glioma spheroids (tumoroids) to (16-mercaptohexadecyl)trimethylammonium bromide-functionalized gold nanorods (MTAB-GNRs) and a near-infrared (NIR) laser. We demonstrate that the photothermal effect can be fine-tuned by adjusting the nanoparticle concentration and laser power. Depending on the selected parameters, the laser can trigger either regulated or non-regulated cell death (necrosis) in both mouse GL261 and human U-87 MG glioma cell lines, accompanied by translocation of phosphatidylserine in the membrane. Our investigation into the mechanism of regulated cell death induced by PPTT revealed an absence of markers associated with classical apoptosis pathways, such as cleaved caspase 3. Instead, we observed the presence of cleaved caspase 1, gasdermin D, and elevated levels of NLRP3 in NIR-irradiated tumoroids, indicating the activation of pyroptosis. This finding correlates with previous observations of lysosomal accumulation of MTAB-GNRs and the known lysosomal pathway of pyroptosis activation. We further confirmed the absence of toxic breakdown products of GNRs using electron microscopy, which showed no melting or fragmentation of gold nanoparticles under the conditions causing regulated cell death. In conclusion, PPTT using coated gold nanorods offers significant potential for glioma cell elimination occurring through the activation of pyroptosis rather than classical apoptosis pathways.
Biomedical Research Center University Hospital Hradec Kralove Czech Republic
Department of Physiology 2nd Faculty of Medicine Charles University Prague Czech Republic
Genome Integrity Group Danish Cancer Institute Danish Cancer Society Copenhagen Denmark
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24018680
- 003
- CZ-PrNML
- 005
- 20250506100513.0
- 007
- ta
- 008
- 241015e20240726ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.colsurfb.2024.114128 $2 doi
- 035 __
- $a (PubMed)39094210
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Zarska, Monika $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic. Electronic address: monika.zarska@img.cas.cz
- 245 10
- $a Photothermal induction of pyroptosis in malignant glioma spheroids using (16-mercaptohexadecyl)trimethylammonium bromide-modified cationic gold nanorods / $c M. Zarska, O. Novak, T. Jakubcova, F. Novotny, A. Urbancokova, F. Havel, J. Novak, H. Raabova, K. Musilek, V. Filimonenko, J. Bartek, J. Proska, Z. Hodny
- 520 9_
- $a Plasmonic photothermal therapy (PPTT) employing plasmonic gold nanorods (GNRs) presents a potent strategy for eradication of tumors including aggressive brain gliomas. Despite its promise, there is a pressing need for a more comprehensive evaluation of PPTT using sophisticated in vitro models that closely resemble tumor tissues, thereby facilitating the elucidation of therapeutic mechanisms. In this study, we exposed 3D glioma spheroids (tumoroids) to (16-mercaptohexadecyl)trimethylammonium bromide-functionalized gold nanorods (MTAB-GNRs) and a near-infrared (NIR) laser. We demonstrate that the photothermal effect can be fine-tuned by adjusting the nanoparticle concentration and laser power. Depending on the selected parameters, the laser can trigger either regulated or non-regulated cell death (necrosis) in both mouse GL261 and human U-87 MG glioma cell lines, accompanied by translocation of phosphatidylserine in the membrane. Our investigation into the mechanism of regulated cell death induced by PPTT revealed an absence of markers associated with classical apoptosis pathways, such as cleaved caspase 3. Instead, we observed the presence of cleaved caspase 1, gasdermin D, and elevated levels of NLRP3 in NIR-irradiated tumoroids, indicating the activation of pyroptosis. This finding correlates with previous observations of lysosomal accumulation of MTAB-GNRs and the known lysosomal pathway of pyroptosis activation. We further confirmed the absence of toxic breakdown products of GNRs using electron microscopy, which showed no melting or fragmentation of gold nanoparticles under the conditions causing regulated cell death. In conclusion, PPTT using coated gold nanorods offers significant potential for glioma cell elimination occurring through the activation of pyroptosis rather than classical apoptosis pathways.
- 650 12
- $a zlato $x chemie $x farmakologie $7 D006046
- 650 12
- $a nanotrubičky $x chemie $7 D043942
- 650 12
- $a gliom $x patologie $x farmakoterapie $x metabolismus $7 D005910
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a pyroptóza $x účinky léků $7 D000069292
- 650 _2
- $a buněčné sféroidy $x účinky léků $x patologie $7 D018874
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a fototermální terapie $7 D000082703
- 650 _2
- $a kvartérní amoniové sloučeniny $x chemie $x farmakologie $7 D000644
- 650 _2
- $a kationty $x chemie $x farmakologie $7 D002412
- 650 _2
- $a nádorové buňky kultivované $7 D014407
- 650 _2
- $a viabilita buněk $x účinky léků $7 D002470
- 650 _2
- $a kovové nanočástice $x chemie $7 D053768
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Novak, Ondrej $u Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- 700 1_
- $a Jakubcova, Tereza $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Novotny, Filip $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- 700 1_
- $a Urbancokova, Alexandra $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Havel, Filip $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Laser Physics and Photonics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- 700 1_
- $a Novak, Josef $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Raabova, Helena $u Electron Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Musilek, Kamil $u Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic
- 700 1_
- $a Filimonenko, Vlada $u Electron Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Bártek, Jiří, $d 1953- $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Genome Integrity Group, Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Science For Life Laboratory, Division of Genome Biology, Karolinska Institute, Stockholm, Sweden $7 xx0046271
- 700 1_
- $a Proska, Jan $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Laser Physics and Photonics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- 700 1_
- $a Hodny, Zdenek $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic. Electronic address: hodny@img.cas.cz
- 773 0_
- $w MED00180202 $t Colloids and surfaces. B, Biointerfaces $x 1873-4367 $g Roč. 243 (20240726), s. 114128
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39094210 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20241015 $b ABA008
- 991 __
- $a 20250506100512 $b ABA008
- 999 __
- $a ok $b bmc $g 2201519 $s 1230653
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 243 $c - $d 114128 $e 20240726 $i 1873-4367 $m Colloids and surfaces. B, Biointerfaces $n Colloids Surf B Biointerfaces $x MED00180202
- LZP __
- $a Pubmed-20241015