• Je něco špatně v tomto záznamu ?

Photothermal induction of pyroptosis in malignant glioma spheroids using (16-mercaptohexadecyl)trimethylammonium bromide-modified cationic gold nanorods

M. Zarska, O. Novak, T. Jakubcova, F. Novotny, A. Urbancokova, F. Havel, J. Novak, H. Raabova, K. Musilek, V. Filimonenko, J. Bartek, J. Proska, Z. Hodny

. 2024 ; 243 (-) : 114128. [pub] 20240726

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24018680

Plasmonic photothermal therapy (PPTT) employing plasmonic gold nanorods (GNRs) presents a potent strategy for eradication of tumors including aggressive brain gliomas. Despite its promise, there is a pressing need for a more comprehensive evaluation of PPTT using sophisticated in vitro models that closely resemble tumor tissues, thereby facilitating the elucidation of therapeutic mechanisms. In this study, we exposed 3D glioma spheroids (tumoroids) to (16-mercaptohexadecyl)trimethylammonium bromide-functionalized gold nanorods (MTAB-GNRs) and a near-infrared (NIR) laser. We demonstrate that the photothermal effect can be fine-tuned by adjusting the nanoparticle concentration and laser power. Depending on the selected parameters, the laser can trigger either regulated or non-regulated cell death (necrosis) in both mouse GL261 and human U-87 MG glioma cell lines, accompanied by translocation of phosphatidylserine in the membrane. Our investigation into the mechanism of regulated cell death induced by PPTT revealed an absence of markers associated with classical apoptosis pathways, such as cleaved caspase 3. Instead, we observed the presence of cleaved caspase 1, gasdermin D, and elevated levels of NLRP3 in NIR-irradiated tumoroids, indicating the activation of pyroptosis. This finding correlates with previous observations of lysosomal accumulation of MTAB-GNRs and the known lysosomal pathway of pyroptosis activation. We further confirmed the absence of toxic breakdown products of GNRs using electron microscopy, which showed no melting or fragmentation of gold nanoparticles under the conditions causing regulated cell death. In conclusion, PPTT using coated gold nanorods offers significant potential for glioma cell elimination occurring through the activation of pyroptosis rather than classical apoptosis pathways.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24018680
003      
CZ-PrNML
005      
20250506100513.0
007      
ta
008      
241015e20240726ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.colsurfb.2024.114128 $2 doi
035    __
$a (PubMed)39094210
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Zarska, Monika $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic. Electronic address: monika.zarska@img.cas.cz
245    10
$a Photothermal induction of pyroptosis in malignant glioma spheroids using (16-mercaptohexadecyl)trimethylammonium bromide-modified cationic gold nanorods / $c M. Zarska, O. Novak, T. Jakubcova, F. Novotny, A. Urbancokova, F. Havel, J. Novak, H. Raabova, K. Musilek, V. Filimonenko, J. Bartek, J. Proska, Z. Hodny
520    9_
$a Plasmonic photothermal therapy (PPTT) employing plasmonic gold nanorods (GNRs) presents a potent strategy for eradication of tumors including aggressive brain gliomas. Despite its promise, there is a pressing need for a more comprehensive evaluation of PPTT using sophisticated in vitro models that closely resemble tumor tissues, thereby facilitating the elucidation of therapeutic mechanisms. In this study, we exposed 3D glioma spheroids (tumoroids) to (16-mercaptohexadecyl)trimethylammonium bromide-functionalized gold nanorods (MTAB-GNRs) and a near-infrared (NIR) laser. We demonstrate that the photothermal effect can be fine-tuned by adjusting the nanoparticle concentration and laser power. Depending on the selected parameters, the laser can trigger either regulated or non-regulated cell death (necrosis) in both mouse GL261 and human U-87 MG glioma cell lines, accompanied by translocation of phosphatidylserine in the membrane. Our investigation into the mechanism of regulated cell death induced by PPTT revealed an absence of markers associated with classical apoptosis pathways, such as cleaved caspase 3. Instead, we observed the presence of cleaved caspase 1, gasdermin D, and elevated levels of NLRP3 in NIR-irradiated tumoroids, indicating the activation of pyroptosis. This finding correlates with previous observations of lysosomal accumulation of MTAB-GNRs and the known lysosomal pathway of pyroptosis activation. We further confirmed the absence of toxic breakdown products of GNRs using electron microscopy, which showed no melting or fragmentation of gold nanoparticles under the conditions causing regulated cell death. In conclusion, PPTT using coated gold nanorods offers significant potential for glioma cell elimination occurring through the activation of pyroptosis rather than classical apoptosis pathways.
650    12
$a zlato $x chemie $x farmakologie $7 D006046
650    12
$a nanotrubičky $x chemie $7 D043942
650    12
$a gliom $x patologie $x farmakoterapie $x metabolismus $7 D005910
650    _2
$a lidé $7 D006801
650    _2
$a myši $7 D051379
650    _2
$a zvířata $7 D000818
650    12
$a pyroptóza $x účinky léků $7 D000069292
650    _2
$a buněčné sféroidy $x účinky léků $x patologie $7 D018874
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a fototermální terapie $7 D000082703
650    _2
$a kvartérní amoniové sloučeniny $x chemie $x farmakologie $7 D000644
650    _2
$a kationty $x chemie $x farmakologie $7 D002412
650    _2
$a nádorové buňky kultivované $7 D014407
650    _2
$a viabilita buněk $x účinky léků $7 D002470
650    _2
$a kovové nanočástice $x chemie $7 D053768
655    _2
$a časopisecké články $7 D016428
700    1_
$a Novak, Ondrej $u Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Jakubcova, Tereza $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Novotny, Filip $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Urbancokova, Alexandra $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Havel, Filip $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Laser Physics and Photonics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
700    1_
$a Novak, Josef $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Raabova, Helena $u Electron Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Musilek, Kamil $u Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic
700    1_
$a Filimonenko, Vlada $u Electron Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Bártek, Jiří, $d 1953- $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Genome Integrity Group, Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Science For Life Laboratory, Division of Genome Biology, Karolinska Institute, Stockholm, Sweden $7 xx0046271
700    1_
$a Proska, Jan $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Laser Physics and Photonics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
700    1_
$a Hodny, Zdenek $u Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic. Electronic address: hodny@img.cas.cz
773    0_
$w MED00180202 $t Colloids and surfaces. B, Biointerfaces $x 1873-4367 $g Roč. 243 (20240726), s. 114128
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39094210 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20250506100512 $b ABA008
999    __
$a ok $b bmc $g 2201519 $s 1230653
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 243 $c - $d 114128 $e 20240726 $i 1873-4367 $m Colloids and surfaces. B, Biointerfaces $n Colloids Surf B Biointerfaces $x MED00180202
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...