• Je něco špatně v tomto záznamu ?

Engineered cytokine/antibody fusion proteins improve IL-2 delivery to pro-inflammatory cells and promote antitumor activity

EK. Leonard, J. Tomala, JR. Gould, MI. Leff, JX. Lin, P. Li, MJ. Porter, ER. Johansen, L. Thompson, SD. Cao, S. Hou, T. Henclova, M. Huliciak, PR. Sargunas, CS. Fabilane, O. Vaněk, M. Kovar, B. Schneider, G. Raimondi, WJ. Leonard, JB. Spangler

. 2024 ; 9 (18) : . [pub] 20240924

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24018867

Grantová podpora
K12 GM123914 NIGMS NIH HHS - United States
R01 EB029341 NIBIB NIH HHS - United States
R01 EB029455 NIBIB NIH HHS - United States
T32 GM135131 NIGMS NIH HHS - United States
R21 CA249381 NCI NIH HHS - United States

Progress in cytokine engineering is driving therapeutic translation by overcoming these proteins' limitations as drugs. The IL-2 cytokine is a promising immune stimulant for cancer treatment but is limited by its concurrent activation of both pro-inflammatory immune effector cells and antiinflammatory regulatory T cells, toxicity at high doses, and short serum half-life. One approach to improve the selectivity, safety, and longevity of IL-2 is complexing with anti-IL-2 antibodies that bias the cytokine toward immune effector cell activation. Although this strategy shows potential in preclinical models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multiprotein drug and concerns regarding complex stability. Here, we introduced a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine toward immune effector cells. We optimized IC construction and engineered the cytokine/antibody affinity to improve immune bias. We demonstrated that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared with natural IL-2, both alone and combined with immune checkpoint inhibitors. Moreover, therapeutic efficacy was observed without inducing toxicity. This work presents a roadmap for the design and translation of cytokine/antibody fusion proteins.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24018867
003      
CZ-PrNML
005      
20241024111124.0
007      
ta
008      
241015s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1172/jci.insight.173469 $2 doi
035    __
$a (PubMed)39115939
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Leonard, Elissa K $u Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
245    10
$a Engineered cytokine/antibody fusion proteins improve IL-2 delivery to pro-inflammatory cells and promote antitumor activity / $c EK. Leonard, J. Tomala, JR. Gould, MI. Leff, JX. Lin, P. Li, MJ. Porter, ER. Johansen, L. Thompson, SD. Cao, S. Hou, T. Henclova, M. Huliciak, PR. Sargunas, CS. Fabilane, O. Vaněk, M. Kovar, B. Schneider, G. Raimondi, WJ. Leonard, JB. Spangler
520    9_
$a Progress in cytokine engineering is driving therapeutic translation by overcoming these proteins' limitations as drugs. The IL-2 cytokine is a promising immune stimulant for cancer treatment but is limited by its concurrent activation of both pro-inflammatory immune effector cells and antiinflammatory regulatory T cells, toxicity at high doses, and short serum half-life. One approach to improve the selectivity, safety, and longevity of IL-2 is complexing with anti-IL-2 antibodies that bias the cytokine toward immune effector cell activation. Although this strategy shows potential in preclinical models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multiprotein drug and concerns regarding complex stability. Here, we introduced a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine toward immune effector cells. We optimized IC construction and engineered the cytokine/antibody affinity to improve immune bias. We demonstrated that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared with natural IL-2, both alone and combined with immune checkpoint inhibitors. Moreover, therapeutic efficacy was observed without inducing toxicity. This work presents a roadmap for the design and translation of cytokine/antibody fusion proteins.
650    12
$a interleukin-2 $x imunologie $7 D007376
650    _2
$a zvířata $7 D000818
650    _2
$a myši $7 D051379
650    12
$a rekombinantní fúzní proteiny $x farmakologie $x imunologie $x aplikace a dávkování $7 D011993
650    _2
$a lidé $7 D006801
650    _2
$a proteinové inženýrství $x metody $7 D015202
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a cytokiny $x metabolismus $7 D016207
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a nádory $x imunologie $x terapie $x farmakoterapie $7 D009369
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a regulační T-lymfocyty $x imunologie $x účinky léků $7 D050378
655    _2
$a časopisecké články $7 D016428
700    1_
$a Tomala, Jakub $u Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec, Czech Republic $u Department of Chemical & Biomolecular Engineering and
700    1_
$a Gould, Joseph R $u Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
700    1_
$a Leff, Michael I $u Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
700    1_
$a Lin, Jian-Xin $u Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
700    1_
$a Li, Peng $u Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
700    1_
$a Porter, Mitchell J $u Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
700    1_
$a Johansen, Eric R $u Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
700    1_
$a Thompson, Ladaisha $u Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
700    1_
$a Cao, Shanelle D $u Department of Chemical & Biomolecular Engineering and
700    1_
$a Hou, Shenda $u Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
700    1_
$a Henclova, Tereza $u Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec, Czech Republic
700    1_
$a Huliciak, Maros $u Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec, Czech Republic $u Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
700    1_
$a Sargunas, Paul R $u Department of Chemical & Biomolecular Engineering and
700    1_
$a Fabilane, Charina S $u Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
700    1_
$a Vaněk, Ondřej $u Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
700    1_
$a Kovar, Marek $u Laboratory of Tumor Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
700    1_
$a Schneider, Bohdan $u Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec, Czech Republic
700    1_
$a Raimondi, Giorgio $u Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery
700    1_
$a Leonard, Warren J $u Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
700    1_
$a Spangler, Jamie B $u Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA $u Department of Chemical & Biomolecular Engineering and $u Translational Tissue Engineering Center $u Department of Oncology $u Bloomberg-Kimmel Institute for Cancer Immunotherapy $u Sidney Kimmel Comprehensive Cancer Center; and $u Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
773    0_
$w MED00194017 $t JCI insight $x 2379-3708 $g Roč. 9, č. 18 (2024)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39115939 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024111118 $b ABA008
999    __
$a ok $b bmc $g 2201623 $s 1230840
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 9 $c 18 $e 20240924 $i 2379-3708 $m JCI insight $n JCI Insight $x MED00194017
GRA    __
$a K12 GM123914 $p NIGMS NIH HHS $2 United States
GRA    __
$a R01 EB029341 $p NIBIB NIH HHS $2 United States
GRA    __
$a R01 EB029455 $p NIBIB NIH HHS $2 United States
GRA    __
$a T32 GM135131 $p NIGMS NIH HHS $2 United States
GRA    __
$a R21 CA249381 $p NCI NIH HHS $2 United States
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...