Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Forecasting extremely high ischemic stroke incidence using meteorological time serie

L. Babalova, M. Grendar, E. Kurca, S. Sivak, E. Kantorova, K. Mikulova, P. Stastny, P. Fasko, K. Szaboova, P. Kubatka, S. Nosal, R. Mikulik, V. Nosal

. 2024 ; 19 (9) : e0310018. [pub] 20240911

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24018936

MOTIVATION: The association between weather conditions and stroke incidence has been a subject of interest for several years, yet the findings from various studies remain inconsistent. Additionally, predictive modelling in this context has been infrequent. This study explores the relationship of extremely high ischaemic stroke incidence and meteorological factors within the Slovak population. Furthermore, it aims to construct forecasting models of extremely high number of strokes. METHODS: Over a five-year period, a total of 52,036 cases of ischemic stroke were documented. Days exhibiting a notable surge in ischemic stroke occurrences (surpassing the 90th percentile of historical records) were identified as extreme cases. These cases were then scrutinized alongside daily meteorological parameters spanning from 2015 to 2019. To create forecasts for the occurrence of these extreme cases one day in advance, three distinct methods were employed: Logistic regression, Random Forest for Time Series, and Croston's method. RESULTS: For each of the analyzed stroke centers, the cross-correlations between instances of extremely high stroke numbers and meteorological factors yielded negligible results. Predictive performance achieved by forecasts generated through multivariate logistic regression and Random Forest for time series analysis, which incorporated meteorological data, was on par with that of Croston's method. Notably, Croston's method relies solely on the stroke time series data. All three forecasting methods exhibited limited predictive accuracy. CONCLUSIONS: The task of predicting days characterized by an exceptionally high number of strokes proved to be challenging across all three explored methods. The inclusion of meteorological parameters did not yield substantive improvements in forecasting accuracy.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24018936
003      
CZ-PrNML
005      
20241024111200.0
007      
ta
008      
241015s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0310018 $2 doi
035    __
$a (PubMed)39259726
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Babalova, Lucia $u Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
245    10
$a Forecasting extremely high ischemic stroke incidence using meteorological time serie / $c L. Babalova, M. Grendar, E. Kurca, S. Sivak, E. Kantorova, K. Mikulova, P. Stastny, P. Fasko, K. Szaboova, P. Kubatka, S. Nosal, R. Mikulik, V. Nosal
520    9_
$a MOTIVATION: The association between weather conditions and stroke incidence has been a subject of interest for several years, yet the findings from various studies remain inconsistent. Additionally, predictive modelling in this context has been infrequent. This study explores the relationship of extremely high ischaemic stroke incidence and meteorological factors within the Slovak population. Furthermore, it aims to construct forecasting models of extremely high number of strokes. METHODS: Over a five-year period, a total of 52,036 cases of ischemic stroke were documented. Days exhibiting a notable surge in ischemic stroke occurrences (surpassing the 90th percentile of historical records) were identified as extreme cases. These cases were then scrutinized alongside daily meteorological parameters spanning from 2015 to 2019. To create forecasts for the occurrence of these extreme cases one day in advance, three distinct methods were employed: Logistic regression, Random Forest for Time Series, and Croston's method. RESULTS: For each of the analyzed stroke centers, the cross-correlations between instances of extremely high stroke numbers and meteorological factors yielded negligible results. Predictive performance achieved by forecasts generated through multivariate logistic regression and Random Forest for time series analysis, which incorporated meteorological data, was on par with that of Croston's method. Notably, Croston's method relies solely on the stroke time series data. All three forecasting methods exhibited limited predictive accuracy. CONCLUSIONS: The task of predicting days characterized by an exceptionally high number of strokes proved to be challenging across all three explored methods. The inclusion of meteorological parameters did not yield substantive improvements in forecasting accuracy.
650    _2
$a lidé $7 D006801
650    _2
$a incidence $7 D015994
650    12
$a předpověď $x metody $7 D005544
650    12
$a ischemická cévní mozková příhoda $x epidemiologie $7 D000083242
650    12
$a počasí $7 D014887
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a meteorologické pojmy $7 D008685
650    _2
$a logistické modely $7 D016015
650    _2
$a senioři $7 D000368
651    _2
$a Slovenská republika $x epidemiologie $7 D018154
655    _2
$a časopisecké články $7 D016428
700    1_
$a Grendar, Marian $u Laboratory of Bioinformatics and Biostatistics, Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia $u Laboratory of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
700    1_
$a Kurca, Egon $u Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
700    1_
$a Sivak, Stefan $u Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
700    1_
$a Kantorova, Ema $u Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
700    1_
$a Mikulova, Katarina $u Slovak Hydrometeorological Institute in Bratislava, Bratislava, Slovakia $1 https://orcid.org/0000000168755854
700    1_
$a Stastny, Pavel $u Slovak Hydrometeorological Institute in Bratislava, Bratislava, Slovakia $1 https://orcid.org/0000000207690433
700    1_
$a Fasko, Pavel $u Slovak Hydrometeorological Institute in Bratislava, Bratislava, Slovakia
700    1_
$a Szaboova, Kristina $u Slovak Hydrometeorological Institute in Bratislava, Bratislava, Slovakia
700    1_
$a Kubatka, Peter $u Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
700    1_
$a Nosal, Slavomir $u Clinic of Paediatric Anaesthesiology and Intensive Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
700    1_
$a Mikulik, Robert $u First Department of Neurology, Faculty of Medicine, Masaryk University, Brno, Czech Republic $u Neurology Department, Tomas Bata Regional Hospital, Zlín, Czech Republic
700    1_
$a Nosal, Vladimir $u Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia $1 https://orcid.org/0000000160448294
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 19, č. 9 (2024), s. e0310018
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39259726 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024111154 $b ABA008
999    __
$a ok $b bmc $g 2201660 $s 1230909
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 19 $c 9 $d e0310018 $e 20240911 $i 1932-6203 $m PloS one $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...