• Je něco špatně v tomto záznamu ?

Fusing linguistic and acoustic information for automated forensic speaker comparison

EK. Sergidou, R. Ypma, J. Rohdin, M. Worring, Z. Geradts, W. Bosma

. 2024 ; 64 (5) : 485-497. [pub] 20240709

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24019032

Verifying the speaker of a speech fragment can be crucial in attributing a crime to a suspect. The question can be addressed given disputed and reference speech material, adopting the recommended and scientifically accepted likelihood ratio framework for reporting evidential strength in court. In forensic practice, usually, auditory and acoustic analyses are performed to carry out such a verification task considering a diversity of features, such as language competence, pronunciation, or other linguistic features. Automated speaker comparison systems can also be used alongside those manual analyses. State-of-the-art automatic speaker comparison systems are based on deep neural networks that take acoustic features as input. Additional information, though, may be obtained from linguistic analysis. In this paper, we aim to answer if, when and how modern acoustic-based systems can be complemented by an authorship technique based on frequent words, within the likelihood ratio framework. We consider three different approaches to derive a combined likelihood ratio: using a support vector machine algorithm, fitting bivariate normal distributions, and passing the score of the acoustic system as additional input to the frequent-word analysis. We apply our method to the forensically relevant dataset FRIDA and the FISHER corpus, and we explore under which conditions fusion is valuable. We evaluate our results in terms of log likelihood ratio cost (Cllr) and equal error rate (EER). We show that fusion can be beneficial, especially in the case of intercepted phone calls with noise in the background.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019032
003      
CZ-PrNML
005      
20241024111152.0
007      
ta
008      
241015s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.scijus.2024.07.001 $2 doi
035    __
$a (PubMed)39277331
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Sergidou, E K $u Netherlands Forensic Institute, PO Box 24044, 2490 AA The Hague, the Netherlands; University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands. Electronic address: e.sergidou@nfi.nl
245    10
$a Fusing linguistic and acoustic information for automated forensic speaker comparison / $c EK. Sergidou, R. Ypma, J. Rohdin, M. Worring, Z. Geradts, W. Bosma
520    9_
$a Verifying the speaker of a speech fragment can be crucial in attributing a crime to a suspect. The question can be addressed given disputed and reference speech material, adopting the recommended and scientifically accepted likelihood ratio framework for reporting evidential strength in court. In forensic practice, usually, auditory and acoustic analyses are performed to carry out such a verification task considering a diversity of features, such as language competence, pronunciation, or other linguistic features. Automated speaker comparison systems can also be used alongside those manual analyses. State-of-the-art automatic speaker comparison systems are based on deep neural networks that take acoustic features as input. Additional information, though, may be obtained from linguistic analysis. In this paper, we aim to answer if, when and how modern acoustic-based systems can be complemented by an authorship technique based on frequent words, within the likelihood ratio framework. We consider three different approaches to derive a combined likelihood ratio: using a support vector machine algorithm, fitting bivariate normal distributions, and passing the score of the acoustic system as additional input to the frequent-word analysis. We apply our method to the forensically relevant dataset FRIDA and the FISHER corpus, and we explore under which conditions fusion is valuable. We evaluate our results in terms of log likelihood ratio cost (Cllr) and equal error rate (EER). We show that fusion can be beneficial, especially in the case of intercepted phone calls with noise in the background.
650    _2
$a lidé $7 D006801
650    12
$a soudní vědy $x metody $7 D044707
650    _2
$a pravděpodobnostní funkce $7 D016013
650    _2
$a lingvistika $7 D008037
650    _2
$a support vector machine $7 D060388
650    _2
$a akustika řeči $7 D013061
650    _2
$a algoritmy $7 D000465
650    _2
$a řeč $7 D013060
655    _2
$a časopisecké články $7 D016428
700    1_
$a Ypma, Rolf $u Netherlands Forensic Institute, PO Box 24044, 2490 AA The Hague, the Netherlands
700    1_
$a Rohdin, Johan $u Brno University of Technology, Boˇzetˇechova 2, Brno 61266, Czech Republic
700    1_
$a Worring, Marcel $u University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
700    1_
$a Geradts, Zeno $u Netherlands Forensic Institute, PO Box 24044, 2490 AA The Hague, the Netherlands; University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
700    1_
$a Bosma, Wauter $u Netherlands Forensic Institute, PO Box 24044, 2490 AA The Hague, the Netherlands
773    0_
$w MED00181665 $t Science & justice $x 1876-4452 $g Roč. 64, č. 5 (2024), s. 485-497
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39277331 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024111146 $b ABA008
999    __
$a ok $b bmc $g 2201699 $s 1231005
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 64 $c 5 $d 485-497 $e 20240709 $i 1876-4452 $m Science & justice $n Sci Justice $x MED00181665
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...