-
Je něco špatně v tomto záznamu ?
Fusing linguistic and acoustic information for automated forensic speaker comparison
EK. Sergidou, R. Ypma, J. Rohdin, M. Worring, Z. Geradts, W. Bosma
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
- MeSH
- akustika řeči MeSH
- algoritmy MeSH
- lidé MeSH
- lingvistika MeSH
- pravděpodobnostní funkce MeSH
- řeč MeSH
- soudní vědy * metody MeSH
- support vector machine MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Verifying the speaker of a speech fragment can be crucial in attributing a crime to a suspect. The question can be addressed given disputed and reference speech material, adopting the recommended and scientifically accepted likelihood ratio framework for reporting evidential strength in court. In forensic practice, usually, auditory and acoustic analyses are performed to carry out such a verification task considering a diversity of features, such as language competence, pronunciation, or other linguistic features. Automated speaker comparison systems can also be used alongside those manual analyses. State-of-the-art automatic speaker comparison systems are based on deep neural networks that take acoustic features as input. Additional information, though, may be obtained from linguistic analysis. In this paper, we aim to answer if, when and how modern acoustic-based systems can be complemented by an authorship technique based on frequent words, within the likelihood ratio framework. We consider three different approaches to derive a combined likelihood ratio: using a support vector machine algorithm, fitting bivariate normal distributions, and passing the score of the acoustic system as additional input to the frequent-word analysis. We apply our method to the forensically relevant dataset FRIDA and the FISHER corpus, and we explore under which conditions fusion is valuable. We evaluate our results in terms of log likelihood ratio cost (Cllr) and equal error rate (EER). We show that fusion can be beneficial, especially in the case of intercepted phone calls with noise in the background.
Brno University of Technology Boˇzetˇechova 2 Brno 61266 Czech Republic
Netherlands Forensic Institute PO Box 24044 2490 AA The Hague the Netherlands
University of Amsterdam Science Park 904 1098 XH Amsterdam the Netherlands
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24019032
- 003
- CZ-PrNML
- 005
- 20241024111152.0
- 007
- ta
- 008
- 241015s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.scijus.2024.07.001 $2 doi
- 035 __
- $a (PubMed)39277331
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Sergidou, E K $u Netherlands Forensic Institute, PO Box 24044, 2490 AA The Hague, the Netherlands; University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands. Electronic address: e.sergidou@nfi.nl
- 245 10
- $a Fusing linguistic and acoustic information for automated forensic speaker comparison / $c EK. Sergidou, R. Ypma, J. Rohdin, M. Worring, Z. Geradts, W. Bosma
- 520 9_
- $a Verifying the speaker of a speech fragment can be crucial in attributing a crime to a suspect. The question can be addressed given disputed and reference speech material, adopting the recommended and scientifically accepted likelihood ratio framework for reporting evidential strength in court. In forensic practice, usually, auditory and acoustic analyses are performed to carry out such a verification task considering a diversity of features, such as language competence, pronunciation, or other linguistic features. Automated speaker comparison systems can also be used alongside those manual analyses. State-of-the-art automatic speaker comparison systems are based on deep neural networks that take acoustic features as input. Additional information, though, may be obtained from linguistic analysis. In this paper, we aim to answer if, when and how modern acoustic-based systems can be complemented by an authorship technique based on frequent words, within the likelihood ratio framework. We consider three different approaches to derive a combined likelihood ratio: using a support vector machine algorithm, fitting bivariate normal distributions, and passing the score of the acoustic system as additional input to the frequent-word analysis. We apply our method to the forensically relevant dataset FRIDA and the FISHER corpus, and we explore under which conditions fusion is valuable. We evaluate our results in terms of log likelihood ratio cost (Cllr) and equal error rate (EER). We show that fusion can be beneficial, especially in the case of intercepted phone calls with noise in the background.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a soudní vědy $x metody $7 D044707
- 650 _2
- $a pravděpodobnostní funkce $7 D016013
- 650 _2
- $a lingvistika $7 D008037
- 650 _2
- $a support vector machine $7 D060388
- 650 _2
- $a akustika řeči $7 D013061
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a řeč $7 D013060
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Ypma, Rolf $u Netherlands Forensic Institute, PO Box 24044, 2490 AA The Hague, the Netherlands
- 700 1_
- $a Rohdin, Johan $u Brno University of Technology, Boˇzetˇechova 2, Brno 61266, Czech Republic
- 700 1_
- $a Worring, Marcel $u University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
- 700 1_
- $a Geradts, Zeno $u Netherlands Forensic Institute, PO Box 24044, 2490 AA The Hague, the Netherlands; University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
- 700 1_
- $a Bosma, Wauter $u Netherlands Forensic Institute, PO Box 24044, 2490 AA The Hague, the Netherlands
- 773 0_
- $w MED00181665 $t Science & justice $x 1876-4452 $g Roč. 64, č. 5 (2024), s. 485-497
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39277331 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20241015 $b ABA008
- 991 __
- $a 20241024111146 $b ABA008
- 999 __
- $a ok $b bmc $g 2201699 $s 1231005
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 64 $c 5 $d 485-497 $e 20240709 $i 1876-4452 $m Science & justice $n Sci Justice $x MED00181665
- LZP __
- $a Pubmed-20241015