-
Je něco špatně v tomto záznamu ?
Raman Vibrational Signatures of Excited States of Echinenone in the Orange Carotenoid Protein (OCP) and Implications for its Photoactivation Mechanism
P. Chrupková, IHM. van Stokkum, T. Friedrich, M. Moldenhauer, N. Budisa, HW. Tseng, T. Polívka, DA. Cherepanov, EG. Maksimov, M. Kloz
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- karotenoidy * chemie metabolismus MeSH
- Ramanova spektroskopie * MeSH
- vibrace * MeSH
- Publikační typ
- časopisecké články MeSH
In this study, the vibrational characteristics of optically excited echinenone in various solvents and the Orange Carotenoid Protein (OCP) in red and orange states are systematically investigated through steady-state and time-resolved spectroscopy techniques. Time-resolved experiments, employing both Transient Absorption (TA) and Femtosecond Stimulated Raman Spectroscopy (FSRS), reveal different states in the OCP photoactivation process. The time-resolved studies indicate vibrational signatures of exited states positioned above the S1 state during the initial 140 fs of carotenoid evolution in OCP, an absence of a vibrational signature for the relaxed S1 state of echinenone in OCP, and more robust signatures of a highly excited ground state (GS) in OCP. Differences in S1 state vibration population signatures between OCP and solvents are attributed to distinct conformations of echinenone in OCP and hydrogen bonds at the keto group forming a short-lived intramolecular charge transfer (ICT) state. The vibrational dynamics of the hot GS in OCP show a more pronounced red shift of ground state CC vibration compared to echinenone in solvents, thus suggesting an unusually hot form of GS. The study proposes a hypothesis for the photoactivation mechanism of OCP, emphasizing the high level of vibrational excitation in longitudinal stretching modes as a driving force. In conclusion, the comparison of vibrational signatures reveals unique dynamics of energy dissipation in OCP, providing insights into the photoactivation mechanism and highlighting the impact of the protein environment on carotenoid behavior. The study underscores the importance of vibrational analysis in understanding the intricate processes involved in early phase OCP photoactivation.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24019335
- 003
- CZ-PrNML
- 005
- 20241024111447.0
- 007
- ta
- 008
- 241015s2024 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jmb.2024.168625 $2 doi
- 035 __
- $a (PubMed)38797429
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Chrupková, Petra $u The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
- 245 10
- $a Raman Vibrational Signatures of Excited States of Echinenone in the Orange Carotenoid Protein (OCP) and Implications for its Photoactivation Mechanism / $c P. Chrupková, IHM. van Stokkum, T. Friedrich, M. Moldenhauer, N. Budisa, HW. Tseng, T. Polívka, DA. Cherepanov, EG. Maksimov, M. Kloz
- 520 9_
- $a In this study, the vibrational characteristics of optically excited echinenone in various solvents and the Orange Carotenoid Protein (OCP) in red and orange states are systematically investigated through steady-state and time-resolved spectroscopy techniques. Time-resolved experiments, employing both Transient Absorption (TA) and Femtosecond Stimulated Raman Spectroscopy (FSRS), reveal different states in the OCP photoactivation process. The time-resolved studies indicate vibrational signatures of exited states positioned above the S1 state during the initial 140 fs of carotenoid evolution in OCP, an absence of a vibrational signature for the relaxed S1 state of echinenone in OCP, and more robust signatures of a highly excited ground state (GS) in OCP. Differences in S1 state vibration population signatures between OCP and solvents are attributed to distinct conformations of echinenone in OCP and hydrogen bonds at the keto group forming a short-lived intramolecular charge transfer (ICT) state. The vibrational dynamics of the hot GS in OCP show a more pronounced red shift of ground state CC vibration compared to echinenone in solvents, thus suggesting an unusually hot form of GS. The study proposes a hypothesis for the photoactivation mechanism of OCP, emphasizing the high level of vibrational excitation in longitudinal stretching modes as a driving force. In conclusion, the comparison of vibrational signatures reveals unique dynamics of energy dissipation in OCP, providing insights into the photoactivation mechanism and highlighting the impact of the protein environment on carotenoid behavior. The study underscores the importance of vibrational analysis in understanding the intricate processes involved in early phase OCP photoactivation.
- 650 12
- $a Ramanova spektroskopie $7 D013059
- 650 12
- $a karotenoidy $x chemie $x metabolismus $7 D002338
- 650 12
- $a vibrace $7 D014732
- 650 _2
- $a bakteriální proteiny $x chemie $x metabolismus $7 D001426
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a van Stokkum, Ivo H M $u Vrije Universiteit, Department of Physics and Astronomy, Faculty of Sciences, De Boelelaan 1081, 1081HV Amsterdam, the Netherlands
- 700 1_
- $a Friedrich, Thomas $u Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
- 700 1_
- $a Moldenhauer, Marcus $u Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
- 700 1_
- $a Budisa, Nediljko $u University of Manitoba, Department of Chemistry, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada
- 700 1_
- $a Tseng, Hsueh-Wei $u University of Manitoba, Department of Chemistry, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada
- 700 1_
- $a Polívka, Tomáš $u University of South Bohemia in České Budějovice, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
- 700 1_
- $a Cherepanov, Dmitry A $u N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 142432 Moscow, Russian Federation; Lomonosov Moscow State University, A.N. Belozersky Institute of Physical-Chemical Biology, 119991 Moscow, Russian Federation
- 700 1_
- $a Maksimov, Eugene G $u Lomonosov Moscow State University, Faculty of Biology, Vorobyovy Gory 1-12, Moscow 119991, Russian Federation
- 700 1_
- $a Kloz, Miroslav $u The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic. Electronic address: miroslav.kloz@eli-beams.eu
- 773 0_
- $w MED00002808 $t Journal of molecular biology $x 1089-8638 $g Roč. 436, č. 16 (2024), s. 168625
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38797429 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20241015 $b ABA008
- 991 __
- $a 20241024111441 $b ABA008
- 999 __
- $a ok $b bmc $g 2201900 $s 1231308
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 436 $c 16 $d 168625 $e 20240524 $i 1089-8638 $m Journal of molecular biology $n J Mol Biol $x MED00002808
- LZP __
- $a Pubmed-20241015