• Je něco špatně v tomto záznamu ?

Raman Vibrational Signatures of Excited States of Echinenone in the Orange Carotenoid Protein (OCP) and Implications for its Photoactivation Mechanism

P. Chrupková, IHM. van Stokkum, T. Friedrich, M. Moldenhauer, N. Budisa, HW. Tseng, T. Polívka, DA. Cherepanov, EG. Maksimov, M. Kloz

. 2024 ; 436 (16) : 168625. [pub] 20240524

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24019335

In this study, the vibrational characteristics of optically excited echinenone in various solvents and the Orange Carotenoid Protein (OCP) in red and orange states are systematically investigated through steady-state and time-resolved spectroscopy techniques. Time-resolved experiments, employing both Transient Absorption (TA) and Femtosecond Stimulated Raman Spectroscopy (FSRS), reveal different states in the OCP photoactivation process. The time-resolved studies indicate vibrational signatures of exited states positioned above the S1 state during the initial 140 fs of carotenoid evolution in OCP, an absence of a vibrational signature for the relaxed S1 state of echinenone in OCP, and more robust signatures of a highly excited ground state (GS) in OCP. Differences in S1 state vibration population signatures between OCP and solvents are attributed to distinct conformations of echinenone in OCP and hydrogen bonds at the keto group forming a short-lived intramolecular charge transfer (ICT) state. The vibrational dynamics of the hot GS in OCP show a more pronounced red shift of ground state CC vibration compared to echinenone in solvents, thus suggesting an unusually hot form of GS. The study proposes a hypothesis for the photoactivation mechanism of OCP, emphasizing the high level of vibrational excitation in longitudinal stretching modes as a driving force. In conclusion, the comparison of vibrational signatures reveals unique dynamics of energy dissipation in OCP, providing insights into the photoactivation mechanism and highlighting the impact of the protein environment on carotenoid behavior. The study underscores the importance of vibrational analysis in understanding the intricate processes involved in early phase OCP photoactivation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019335
003      
CZ-PrNML
005      
20241024111447.0
007      
ta
008      
241015s2024 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jmb.2024.168625 $2 doi
035    __
$a (PubMed)38797429
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Chrupková, Petra $u The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
245    10
$a Raman Vibrational Signatures of Excited States of Echinenone in the Orange Carotenoid Protein (OCP) and Implications for its Photoactivation Mechanism / $c P. Chrupková, IHM. van Stokkum, T. Friedrich, M. Moldenhauer, N. Budisa, HW. Tseng, T. Polívka, DA. Cherepanov, EG. Maksimov, M. Kloz
520    9_
$a In this study, the vibrational characteristics of optically excited echinenone in various solvents and the Orange Carotenoid Protein (OCP) in red and orange states are systematically investigated through steady-state and time-resolved spectroscopy techniques. Time-resolved experiments, employing both Transient Absorption (TA) and Femtosecond Stimulated Raman Spectroscopy (FSRS), reveal different states in the OCP photoactivation process. The time-resolved studies indicate vibrational signatures of exited states positioned above the S1 state during the initial 140 fs of carotenoid evolution in OCP, an absence of a vibrational signature for the relaxed S1 state of echinenone in OCP, and more robust signatures of a highly excited ground state (GS) in OCP. Differences in S1 state vibration population signatures between OCP and solvents are attributed to distinct conformations of echinenone in OCP and hydrogen bonds at the keto group forming a short-lived intramolecular charge transfer (ICT) state. The vibrational dynamics of the hot GS in OCP show a more pronounced red shift of ground state CC vibration compared to echinenone in solvents, thus suggesting an unusually hot form of GS. The study proposes a hypothesis for the photoactivation mechanism of OCP, emphasizing the high level of vibrational excitation in longitudinal stretching modes as a driving force. In conclusion, the comparison of vibrational signatures reveals unique dynamics of energy dissipation in OCP, providing insights into the photoactivation mechanism and highlighting the impact of the protein environment on carotenoid behavior. The study underscores the importance of vibrational analysis in understanding the intricate processes involved in early phase OCP photoactivation.
650    12
$a Ramanova spektroskopie $7 D013059
650    12
$a karotenoidy $x chemie $x metabolismus $7 D002338
650    12
$a vibrace $7 D014732
650    _2
$a bakteriální proteiny $x chemie $x metabolismus $7 D001426
655    _2
$a časopisecké články $7 D016428
700    1_
$a van Stokkum, Ivo H M $u Vrije Universiteit, Department of Physics and Astronomy, Faculty of Sciences, De Boelelaan 1081, 1081HV Amsterdam, the Netherlands
700    1_
$a Friedrich, Thomas $u Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
700    1_
$a Moldenhauer, Marcus $u Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
700    1_
$a Budisa, Nediljko $u University of Manitoba, Department of Chemistry, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada
700    1_
$a Tseng, Hsueh-Wei $u University of Manitoba, Department of Chemistry, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada
700    1_
$a Polívka, Tomáš $u University of South Bohemia in České Budějovice, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
700    1_
$a Cherepanov, Dmitry A $u N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 142432 Moscow, Russian Federation; Lomonosov Moscow State University, A.N. Belozersky Institute of Physical-Chemical Biology, 119991 Moscow, Russian Federation
700    1_
$a Maksimov, Eugene G $u Lomonosov Moscow State University, Faculty of Biology, Vorobyovy Gory 1-12, Moscow 119991, Russian Federation
700    1_
$a Kloz, Miroslav $u The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic. Electronic address: miroslav.kloz@eli-beams.eu
773    0_
$w MED00002808 $t Journal of molecular biology $x 1089-8638 $g Roč. 436, č. 16 (2024), s. 168625
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38797429 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024111441 $b ABA008
999    __
$a ok $b bmc $g 2201900 $s 1231308
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 436 $c 16 $d 168625 $e 20240524 $i 1089-8638 $m Journal of molecular biology $n J Mol Biol $x MED00002808
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...