• Je něco špatně v tomto záznamu ?

Good manufacturing practice-grade generation of CD19 and CD123-specific CAR-T cells using piggyBac transposon and allogeneic feeder cells in patients diagnosed with B-cell non-Hodgkin lymphoma and acute myeloid leukemia

M. Mucha, M. Štach, I. Kaštánková, J. Rychlá, J. Vydra, P. Lesný, P. Otáhal

. 2024 ; 15 (-) : 1415328. [pub] 20240813

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24019343

BACKGROUND: The non-viral production of CAR-T cells through electroporation of transposon DNA plasmids is an alternative approach to lentiviral/retroviral methods. This method is particularly suitable for early-phase clinical trials involving novel types of CAR-T cells. The primary disadvantage of non-viral methods is the lower production efficiency compared to viral-based methods, which becomes a limiting factor for CAR-T production, especially in chemotherapy-pretreated lymphopenic patients. METHODS: We describe a good manufacturing practice (GMP)-compliant protocol for producing CD19 and CD123-specific CAR-T cells based on the electroporation of transposon vectors. The lymphocytes were purified from the blood of patients undergoing chemotherapy for B-NHL or AML and were electroporated with piggyBac transposon encoding CAR19 or CAR123, respectively. Electroporated cells were then polyclonally activated by anti-CD3/CD28 antibodies and a combination of cytokines (IL-4, IL-7, IL-21). The expansion was carried out in the presence of irradiated allogeneic blood-derived mononuclear cells (i.e., the feeder) for up to 21 days. RESULTS: Expansion in the presence of the feeder enhanced CAR-T production yield (4.5-fold in CAR19 and 9.3-fold in CAR123). Detailed flow-cytometric analysis revealed the persistence of early-memory CAR-T cells and a low vector-copy number after production in the presence of the feeder, with no negative impact on the cytotoxicity of feeder-produced CAR19 and CAR123 T cells. Furthermore, large-scale manufacturing of CAR19 carried out under GMP conditions using PBMCs obtained from B-NHL patients (starting number=200x10e6 cells) enabled the production of >50x10e6 CAR19 in 7 out of 8 cases in the presence of the feeder while only in 2 out of 8 cases without the feeder. CONCLUSIONS: The described approach enables GMP-compatible production of sufficient numbers of CAR19 and CAR123 T cells for clinical application and provides the basis for non-viral manufacturing of novel experimental CAR-T cells that can be tested in early-phase clinical trials. This manufacturing approach can complement and advance novel experimental immunotherapeutic strategies against human hematologic malignancies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019343
003      
CZ-PrNML
005      
20241024111445.0
007      
ta
008      
241015e20240813sz f 000 0|eng||
009      
AR
024    7_
$a 10.3389/fimmu.2024.1415328 $2 doi
035    __
$a (PubMed)39192973
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Mucha, Martin $u Institute of Hematology and Blood Transfusion, Prague, Czechia $u Faculty of Science, Charles University, Prague, Czechia
245    10
$a Good manufacturing practice-grade generation of CD19 and CD123-specific CAR-T cells using piggyBac transposon and allogeneic feeder cells in patients diagnosed with B-cell non-Hodgkin lymphoma and acute myeloid leukemia / $c M. Mucha, M. Štach, I. Kaštánková, J. Rychlá, J. Vydra, P. Lesný, P. Otáhal
520    9_
$a BACKGROUND: The non-viral production of CAR-T cells through electroporation of transposon DNA plasmids is an alternative approach to lentiviral/retroviral methods. This method is particularly suitable for early-phase clinical trials involving novel types of CAR-T cells. The primary disadvantage of non-viral methods is the lower production efficiency compared to viral-based methods, which becomes a limiting factor for CAR-T production, especially in chemotherapy-pretreated lymphopenic patients. METHODS: We describe a good manufacturing practice (GMP)-compliant protocol for producing CD19 and CD123-specific CAR-T cells based on the electroporation of transposon vectors. The lymphocytes were purified from the blood of patients undergoing chemotherapy for B-NHL or AML and were electroporated with piggyBac transposon encoding CAR19 or CAR123, respectively. Electroporated cells were then polyclonally activated by anti-CD3/CD28 antibodies and a combination of cytokines (IL-4, IL-7, IL-21). The expansion was carried out in the presence of irradiated allogeneic blood-derived mononuclear cells (i.e., the feeder) for up to 21 days. RESULTS: Expansion in the presence of the feeder enhanced CAR-T production yield (4.5-fold in CAR19 and 9.3-fold in CAR123). Detailed flow-cytometric analysis revealed the persistence of early-memory CAR-T cells and a low vector-copy number after production in the presence of the feeder, with no negative impact on the cytotoxicity of feeder-produced CAR19 and CAR123 T cells. Furthermore, large-scale manufacturing of CAR19 carried out under GMP conditions using PBMCs obtained from B-NHL patients (starting number=200x10e6 cells) enabled the production of >50x10e6 CAR19 in 7 out of 8 cases in the presence of the feeder while only in 2 out of 8 cases without the feeder. CONCLUSIONS: The described approach enables GMP-compatible production of sufficient numbers of CAR19 and CAR123 T cells for clinical application and provides the basis for non-viral manufacturing of novel experimental CAR-T cells that can be tested in early-phase clinical trials. This manufacturing approach can complement and advance novel experimental immunotherapeutic strategies against human hematologic malignancies.
650    _2
$a lidé $7 D006801
650    12
$a imunoterapie adoptivní $x metody $7 D016219
650    12
$a antigeny CD19 $x imunologie $x genetika $7 D018941
650    12
$a chimerické antigenní receptory $x genetika $x imunologie $7 D000076962
650    12
$a transpozibilní elementy DNA $7 D004251
650    12
$a akutní myeloidní leukemie $x terapie $x imunologie $x genetika $7 D015470
650    _2
$a podkladové buňky $7 D061252
650    _2
$a B-buněčný lymfom $x terapie $x imunologie $x genetika $7 D016393
650    _2
$a T-lymfocyty $x imunologie $x metabolismus $7 D013601
650    _2
$a elektroporace $7 D018274
650    _2
$a allogeneické buňky $x imunologie $7 D000078422
655    _2
$a časopisecké články $7 D016428
700    1_
$a Štach, Martin $u Institute of Hematology and Blood Transfusion, Prague, Czechia $u Faculty of Science, Charles University, Prague, Czechia
700    1_
$a Kaštánková, Iva $u Institute of Hematology and Blood Transfusion, Prague, Czechia
700    1_
$a Rychlá, Jana $u Institute of Hematology and Blood Transfusion, Prague, Czechia
700    1_
$a Vydra, Jan $u Institute of Hematology and Blood Transfusion, Prague, Czechia
700    1_
$a Lesný, Petr $u Institute of Hematology and Blood Transfusion, Prague, Czechia
700    1_
$a Otáhal, Pavel $u Institute of Hematology and Blood Transfusion, Prague, Czechia
773    0_
$w MED00181405 $t Frontiers in immunology $x 1664-3224 $g Roč. 15 (20240813), s. 1415328
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39192973 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024111439 $b ABA008
999    __
$a ok $b bmc $g 2201903 $s 1231316
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 15 $c - $d 1415328 $e 20240813 $i 1664-3224 $m Frontiers in immunology $n Front Immunol $x MED00181405
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...