• Je něco špatně v tomto záznamu ?

Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa

J. Šístková, T. Fialová, E. Svoboda, K. Varmužová, M. Uher, K. Číhalová, J. Přibyl, A. Dlouhý, M. Pávková Goldbergová

. 2024 ; 14 (1) : 17303. [pub] 20240727

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24019672

Grantová podpora
GA20-11321S Grantová Agentura České Republiky

Materials used for orthopedic implants should not only have physical properties close to those of bones, durability and biocompatibility, but should also exhibit a sufficient degree of antibacterial functionality. Due to its excellent properties, titanium is still a widely used material for production of orthopedic implants, but the unmodified material exhibits poor antibacterial activity. In this work, the physicochemical characteristics, such as chemical composition, crystallinity, wettability, roughness, and release of Ti ions of the titanium surface modified with nanotubular layers were analyzed and its antibacterial activity against two biofilm-forming bacterial strains responsible for prosthetic joint infection (Staphylococcus aureus and Pseudomonas aeruginosa) was investigated. Electrochemical anodization (anodic oxidation) was used to prepare two types of nanotubular arrays with nanotubes differing in dimensions (with diameters of 73 and 118 nm and lengths of 572 and 343 nm, respectively). These two surface types showed similar chemistry, crystallinity, and surface energy. The surface with smaller nanotube diameter (TNT-73) but larger values of roughness parameters was more effective against S. aureus. For P. aeruginosa the sample with a larger nanotube diameter (TNT-118) had better antibacterial effect with proven cell lysis. Antibacterial properties of titanium nanotubular surfaces with potential in implantology, which in our previous work demonstrated a positive effect on the behavior of human gingival fibroblasts, were investigated in terms of surface parameters. The interplay between nanotube diameter and roughness appeared critical for the bacterial fate on nanotubular surfaces. The relationship of nanotube diameter, values of roughness parameters, and other surface properties to bacterial behavior is discussed in detail. The study is believed to shed more light on how nanotubular surface parameters and their interplay affect antibacterial activity.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019672
003      
CZ-PrNML
005      
20241024110712.0
007      
ta
008      
241015s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-024-68266-1 $2 doi
035    __
$a (PubMed)39068252
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Šístková, Jana $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
245    10
$a Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa / $c J. Šístková, T. Fialová, E. Svoboda, K. Varmužová, M. Uher, K. Číhalová, J. Přibyl, A. Dlouhý, M. Pávková Goldbergová
520    9_
$a Materials used for orthopedic implants should not only have physical properties close to those of bones, durability and biocompatibility, but should also exhibit a sufficient degree of antibacterial functionality. Due to its excellent properties, titanium is still a widely used material for production of orthopedic implants, but the unmodified material exhibits poor antibacterial activity. In this work, the physicochemical characteristics, such as chemical composition, crystallinity, wettability, roughness, and release of Ti ions of the titanium surface modified with nanotubular layers were analyzed and its antibacterial activity against two biofilm-forming bacterial strains responsible for prosthetic joint infection (Staphylococcus aureus and Pseudomonas aeruginosa) was investigated. Electrochemical anodization (anodic oxidation) was used to prepare two types of nanotubular arrays with nanotubes differing in dimensions (with diameters of 73 and 118 nm and lengths of 572 and 343 nm, respectively). These two surface types showed similar chemistry, crystallinity, and surface energy. The surface with smaller nanotube diameter (TNT-73) but larger values of roughness parameters was more effective against S. aureus. For P. aeruginosa the sample with a larger nanotube diameter (TNT-118) had better antibacterial effect with proven cell lysis. Antibacterial properties of titanium nanotubular surfaces with potential in implantology, which in our previous work demonstrated a positive effect on the behavior of human gingival fibroblasts, were investigated in terms of surface parameters. The interplay between nanotube diameter and roughness appeared critical for the bacterial fate on nanotubular surfaces. The relationship of nanotube diameter, values of roughness parameters, and other surface properties to bacterial behavior is discussed in detail. The study is believed to shed more light on how nanotubular surface parameters and their interplay affect antibacterial activity.
650    12
$a titan $x chemie $x farmakologie $7 D014025
650    12
$a Pseudomonas aeruginosa $x účinky léků $7 D011550
650    12
$a Staphylococcus aureus $x účinky léků $7 D013211
650    12
$a antibakteriální látky $x farmakologie $x chemie $7 D000900
650    12
$a nanotrubičky $x chemie $7 D043942
650    12
$a povrchové vlastnosti $7 D013499
650    _2
$a biofilmy $x účinky léků $x růst a vývoj $7 D018441
650    _2
$a mikrobiální testy citlivosti $7 D008826
650    _2
$a lidé $7 D006801
655    _2
$a časopisecké články $7 D016428
700    1_
$a Fialová, Tatiana $u Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
700    1_
$a Svoboda, Emil $u Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Kounicova 65, Brno, 662 10, Czech Republic
700    1_
$a Varmužová, Kateřina $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
700    1_
$a Uher, Martin $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
700    1_
$a Číhalová, Kristýna $u Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
700    1_
$a Přibyl, Jan $u Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
700    1_
$a Dlouhý, Antonín $u Institute of Physics of Materials, Czech Academy of Sciences, v. v. i., Žižkova 513/22, Brno, 616 62, Czech Republic
700    1_
$a Pávková Goldbergová, Monika $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic. goldberg@med.muni.cz
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 14, č. 1 (2024), s. 17303
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39068252 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024110706 $b ABA008
999    __
$a ok $b bmc $g 2202106 $s 1231645
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 14 $c 1 $d 17303 $e 20240727 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a GA20-11321S $p Grantová Agentura České Republiky
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...