• Je něco špatně v tomto záznamu ?

Retinal Image Dataset of Infants and Retinopathy of Prematurity

J. Timkovič, J. Nowaková, J. Kubíček, M. Hasal, A. Varyšová, L. Kolarčík, K. Maršolková, M. Augustynek, V. Snášel

. 2024 ; 11 (1) : 814. [pub] 20240723

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu dataset, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24019693

Grantová podpora
GF22-34873K Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
CZ.02.01.01/00/22_008/0004590 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
SP2024/071 Vysoká Škola Bánská - Technická Univerzita Ostrava (VŠB - Technical University of Ostrava)
CZ.02.1.01/0.0/ 0.0/15_003/0000466 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
SP2024/071 Vysoká Škola Bánská - Technická Univerzita Ostrava (VŠB - Technical University of Ostrava)
CZ.02.01.01/00/22_008/0004590 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Retinopathy of prematurity (ROP) represents a vasoproliferative disease, especially in newborns and infants, which can potentially affect and damage the vision. Despite recent advances in neonatal care and medical guidelines, ROP still remains one of the leading causes of worldwide childhood blindness. The paper presents a unique dataset of 6,004 retinal images of 188 newborns, most of whom are premature infants. The dataset is accompanied by the anonymized patients' information from the ROP screening acquired at the University Hospital Ostrava, Czech Republic. Three digital retinal imaging camera systems are used in the study: Clarity RetCam 3, Natus RetCam Envision, and Phoenix ICON. The study is enriched by the software tool ReLeSeT which is aimed at automatic retinal lesion segmentation and extraction from retinal images. Consequently, this tool enables computing geometric and intensity features of retinal lesions. Also, we publish a set of pre-processing tools for feature boosting of retinal lesions and retinal blood vessels for building classification and segmentation models in ROP analysis.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019693
003      
CZ-PrNML
005      
20241024110649.0
007      
ta
008      
241015s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41597-024-03409-7 $2 doi
035    __
$a (PubMed)39043697
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Timkovič, Juraj $u University Hospital Ostrava, Clinic of Ophthalmology, Ostrava, 708 52, Czech Republic $u University of Ostrava, Faculty of Medicine, Department of Craniofacial Surgery, Ostrava, 703 00, Czech Republic $1 https://orcid.org/0000000307670552 $7 xx0228681
245    10
$a Retinal Image Dataset of Infants and Retinopathy of Prematurity / $c J. Timkovič, J. Nowaková, J. Kubíček, M. Hasal, A. Varyšová, L. Kolarčík, K. Maršolková, M. Augustynek, V. Snášel
520    9_
$a Retinopathy of prematurity (ROP) represents a vasoproliferative disease, especially in newborns and infants, which can potentially affect and damage the vision. Despite recent advances in neonatal care and medical guidelines, ROP still remains one of the leading causes of worldwide childhood blindness. The paper presents a unique dataset of 6,004 retinal images of 188 newborns, most of whom are premature infants. The dataset is accompanied by the anonymized patients' information from the ROP screening acquired at the University Hospital Ostrava, Czech Republic. Three digital retinal imaging camera systems are used in the study: Clarity RetCam 3, Natus RetCam Envision, and Phoenix ICON. The study is enriched by the software tool ReLeSeT which is aimed at automatic retinal lesion segmentation and extraction from retinal images. Consequently, this tool enables computing geometric and intensity features of retinal lesions. Also, we publish a set of pre-processing tools for feature boosting of retinal lesions and retinal blood vessels for building classification and segmentation models in ROP analysis.
650    12
$a retinopatie nedonošených $x diagnostické zobrazování $7 D012178
650    _2
$a lidé $7 D006801
650    _2
$a novorozenec $7 D007231
650    12
$a retina $x diagnostické zobrazování $7 D012160
650    12
$a novorozenec nedonošený $7 D007234
650    _2
$a počítačové zpracování obrazu $7 D007091
651    _2
$a Česká republika $7 D018153
655    _2
$a dataset $7 D064886
655    _2
$a časopisecké články $7 D016428
700    1_
$a Nowaková, Jana $u VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Computer Science, Ostrava, 708 00, Czech Republic. jana.nowakova@vsb.cz $1 https://orcid.org/0000000252133302
700    1_
$a Kubíček, Jan $u VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Cybernetics and Biomedical Engineering, Ostrava, 708 00, Czech Republic
700    1_
$a Hasal, Martin $u VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Computer Science, Ostrava, 708 00, Czech Republic
700    1_
$a Varyšová, Alice $u VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Cybernetics and Biomedical Engineering, Ostrava, 708 00, Czech Republic
700    1_
$a Kolarčík, Lukáš $u University Hospital Ostrava, Clinic of Ophthalmology, Ostrava, 708 52, Czech Republic
700    1_
$a Maršolková, Kristýna $u University Hospital Ostrava, Clinic of Ophthalmology, Ostrava, 708 52, Czech Republic
700    1_
$a Augustynek, Martin $u VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Cybernetics and Biomedical Engineering, Ostrava, 708 00, Czech Republic $1 https://orcid.org/0000000201657317 $7 ola2011639627
700    1_
$a Snášel, Václav $u VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Computer Science, Ostrava, 708 00, Czech Republic
773    0_
$w MED00208692 $t Scientific data $x 2052-4463 $g Roč. 11, č. 1 (2024), s. 814
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39043697 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024110643 $b ABA008
999    __
$a ok $b bmc $g 2202118 $s 1231666
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 11 $c 1 $d 814 $e 20240723 $i 2052-4463 $m Scientific data $n Sci Data $x MED00208692
GRA    __
$a GF22-34873K $p Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
GRA    __
$a CZ.02.01.01/00/22_008/0004590 $p Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
GRA    __
$a SP2024/071 $p Vysoká Škola Bánská - Technická Univerzita Ostrava (VŠB - Technical University of Ostrava)
GRA    __
$a CZ.02.1.01/0.0/ 0.0/15_003/0000466 $p EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
GRA    __
$a SP2024/071 $p Vysoká Škola Bánská - Technická Univerzita Ostrava (VŠB - Technical University of Ostrava)
GRA    __
$a CZ.02.01.01/00/22_008/0004590 $p Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...