-
Je něco špatně v tomto záznamu ?
Retinal Image Dataset of Infants and Retinopathy of Prematurity
J. Timkovič, J. Nowaková, J. Kubíček, M. Hasal, A. Varyšová, L. Kolarčík, K. Maršolková, M. Augustynek, V. Snášel
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu dataset, časopisecké články
Grantová podpora
GF22-34873K
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
CZ.02.01.01/00/22_008/0004590
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
SP2024/071
Vysoká Škola Bánská - Technická Univerzita Ostrava (VŠB - Technical University of Ostrava)
CZ.02.1.01/0.0/ 0.0/15_003/0000466
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
SP2024/071
Vysoká Škola Bánská - Technická Univerzita Ostrava (VŠB - Technical University of Ostrava)
CZ.02.01.01/00/22_008/0004590
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
NLK
Directory of Open Access Journals
od 2014
Free Medical Journals
od 2014
Nature Open Access
od 2014-12-01
PubMed Central
od 2014
Europe PubMed Central
od 2014
ProQuest Central
od 2014-03-01
Open Access Digital Library
od 2014-01-01
Open Access Digital Library
od 2014-01-01
Health & Medicine (ProQuest)
od 2014-03-01
ROAD: Directory of Open Access Scholarly Resources
od 2014
- MeSH
- lidé MeSH
- novorozenec nedonošený * MeSH
- novorozenec MeSH
- počítačové zpracování obrazu MeSH
- retina * diagnostické zobrazování MeSH
- retinopatie nedonošených * diagnostické zobrazování MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- Geografické názvy
- Česká republika MeSH
Retinopathy of prematurity (ROP) represents a vasoproliferative disease, especially in newborns and infants, which can potentially affect and damage the vision. Despite recent advances in neonatal care and medical guidelines, ROP still remains one of the leading causes of worldwide childhood blindness. The paper presents a unique dataset of 6,004 retinal images of 188 newborns, most of whom are premature infants. The dataset is accompanied by the anonymized patients' information from the ROP screening acquired at the University Hospital Ostrava, Czech Republic. Three digital retinal imaging camera systems are used in the study: Clarity RetCam 3, Natus RetCam Envision, and Phoenix ICON. The study is enriched by the software tool ReLeSeT which is aimed at automatic retinal lesion segmentation and extraction from retinal images. Consequently, this tool enables computing geometric and intensity features of retinal lesions. Also, we publish a set of pre-processing tools for feature boosting of retinal lesions and retinal blood vessels for building classification and segmentation models in ROP analysis.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24019693
- 003
- CZ-PrNML
- 005
- 20241024110649.0
- 007
- ta
- 008
- 241015s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41597-024-03409-7 $2 doi
- 035 __
- $a (PubMed)39043697
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Timkovič, Juraj $u University Hospital Ostrava, Clinic of Ophthalmology, Ostrava, 708 52, Czech Republic $u University of Ostrava, Faculty of Medicine, Department of Craniofacial Surgery, Ostrava, 703 00, Czech Republic $1 https://orcid.org/0000000307670552 $7 xx0228681
- 245 10
- $a Retinal Image Dataset of Infants and Retinopathy of Prematurity / $c J. Timkovič, J. Nowaková, J. Kubíček, M. Hasal, A. Varyšová, L. Kolarčík, K. Maršolková, M. Augustynek, V. Snášel
- 520 9_
- $a Retinopathy of prematurity (ROP) represents a vasoproliferative disease, especially in newborns and infants, which can potentially affect and damage the vision. Despite recent advances in neonatal care and medical guidelines, ROP still remains one of the leading causes of worldwide childhood blindness. The paper presents a unique dataset of 6,004 retinal images of 188 newborns, most of whom are premature infants. The dataset is accompanied by the anonymized patients' information from the ROP screening acquired at the University Hospital Ostrava, Czech Republic. Three digital retinal imaging camera systems are used in the study: Clarity RetCam 3, Natus RetCam Envision, and Phoenix ICON. The study is enriched by the software tool ReLeSeT which is aimed at automatic retinal lesion segmentation and extraction from retinal images. Consequently, this tool enables computing geometric and intensity features of retinal lesions. Also, we publish a set of pre-processing tools for feature boosting of retinal lesions and retinal blood vessels for building classification and segmentation models in ROP analysis.
- 650 12
- $a retinopatie nedonošených $x diagnostické zobrazování $7 D012178
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a novorozenec $7 D007231
- 650 12
- $a retina $x diagnostické zobrazování $7 D012160
- 650 12
- $a novorozenec nedonošený $7 D007234
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 651 _2
- $a Česká republika $7 D018153
- 655 _2
- $a dataset $7 D064886
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Nowaková, Jana $u VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Computer Science, Ostrava, 708 00, Czech Republic. jana.nowakova@vsb.cz $1 https://orcid.org/0000000252133302
- 700 1_
- $a Kubíček, Jan $u VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Cybernetics and Biomedical Engineering, Ostrava, 708 00, Czech Republic
- 700 1_
- $a Hasal, Martin $u VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Computer Science, Ostrava, 708 00, Czech Republic
- 700 1_
- $a Varyšová, Alice $u VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Cybernetics and Biomedical Engineering, Ostrava, 708 00, Czech Republic
- 700 1_
- $a Kolarčík, Lukáš $u University Hospital Ostrava, Clinic of Ophthalmology, Ostrava, 708 52, Czech Republic
- 700 1_
- $a Maršolková, Kristýna $u University Hospital Ostrava, Clinic of Ophthalmology, Ostrava, 708 52, Czech Republic
- 700 1_
- $a Augustynek, Martin $u VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Cybernetics and Biomedical Engineering, Ostrava, 708 00, Czech Republic $1 https://orcid.org/0000000201657317 $7 ola2011639627
- 700 1_
- $a Snášel, Václav $u VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Computer Science, Ostrava, 708 00, Czech Republic
- 773 0_
- $w MED00208692 $t Scientific data $x 2052-4463 $g Roč. 11, č. 1 (2024), s. 814
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39043697 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20241015 $b ABA008
- 991 __
- $a 20241024110643 $b ABA008
- 999 __
- $a ok $b bmc $g 2202118 $s 1231666
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 11 $c 1 $d 814 $e 20240723 $i 2052-4463 $m Scientific data $n Sci Data $x MED00208692
- GRA __
- $a GF22-34873K $p Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
- GRA __
- $a CZ.02.01.01/00/22_008/0004590 $p Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- GRA __
- $a SP2024/071 $p Vysoká Škola Bánská - Technická Univerzita Ostrava (VŠB - Technical University of Ostrava)
- GRA __
- $a CZ.02.1.01/0.0/ 0.0/15_003/0000466 $p EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
- GRA __
- $a SP2024/071 $p Vysoká Škola Bánská - Technická Univerzita Ostrava (VŠB - Technical University of Ostrava)
- GRA __
- $a CZ.02.01.01/00/22_008/0004590 $p Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LZP __
- $a Pubmed-20241015