-
Je něco špatně v tomto záznamu ?
Understanding bacterial pathogen diversity: A proteogenomic analysis and use of an array of genome assemblies to identify novel virulence factors of the honey bee bacterial pathogen Paenibacillus larvae
T. Erban, B. Sopko
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články
Grantová podpora
QK1710228
Národní Agentura pro Zemědělský Výzkum
QK1910018
Národní Agentura pro Zemědělský Výzkum
RO0423
Ministerstvo Zemědělství
PubMed
38742951
DOI
10.1002/pmic.202300280
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny * genetika metabolismus MeSH
- databáze proteinů MeSH
- faktory virulence * genetika metabolismus MeSH
- genom bakteriální * genetika MeSH
- Paenibacillus larvae * genetika patogenita metabolismus MeSH
- proteogenomika * metody MeSH
- proteomika metody MeSH
- včely mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Mass spectrometry proteomics data are typically evaluated against publicly available annotated sequences, but the proteogenomics approach is a useful alternative. A single genome is commonly utilized in custom proteomic and proteogenomic data analysis. We pose the question of whether utilizing numerous different genome assemblies in a search database would be beneficial. We reanalyzed raw data from the exoprotein fraction of four reference Enterobacterial Repetitive Intergenic Consensus (ERIC) I-IV genotypes of the honey bee bacterial pathogen Paenibacillus larvae and evaluated them against three reference databases (from NCBI-protein, RefSeq, and UniProt) together with an array of protein sequences generated by six-frame direct translation of 15 genome assemblies from GenBank. The wide search yielded 453 protein hits/groups, which UpSet analysis categorized into 50 groups based on the success of protein identification by the 18 database components. Nine hits that were not identified by a unique peptide were not considered for marker selection, which discarded the only protein that was not identified by the reference databases. We propose that the variability in successful identifications between genome assemblies is useful for marker mining. The results suggest that various strains of P. larvae can exhibit specific traits that set them apart from the established genotypes ERIC I-V.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24019912
- 003
- CZ-PrNML
- 005
- 20241024111021.0
- 007
- ta
- 008
- 241015s2024 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/pmic.202300280 $2 doi
- 035 __
- $a (PubMed)38742951
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Erban, Tomas $u Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia $1 https://orcid.org/000000031730779X $7 mzk2005306687
- 245 10
- $a Understanding bacterial pathogen diversity: A proteogenomic analysis and use of an array of genome assemblies to identify novel virulence factors of the honey bee bacterial pathogen Paenibacillus larvae / $c T. Erban, B. Sopko
- 520 9_
- $a Mass spectrometry proteomics data are typically evaluated against publicly available annotated sequences, but the proteogenomics approach is a useful alternative. A single genome is commonly utilized in custom proteomic and proteogenomic data analysis. We pose the question of whether utilizing numerous different genome assemblies in a search database would be beneficial. We reanalyzed raw data from the exoprotein fraction of four reference Enterobacterial Repetitive Intergenic Consensus (ERIC) I-IV genotypes of the honey bee bacterial pathogen Paenibacillus larvae and evaluated them against three reference databases (from NCBI-protein, RefSeq, and UniProt) together with an array of protein sequences generated by six-frame direct translation of 15 genome assemblies from GenBank. The wide search yielded 453 protein hits/groups, which UpSet analysis categorized into 50 groups based on the success of protein identification by the 18 database components. Nine hits that were not identified by a unique peptide were not considered for marker selection, which discarded the only protein that was not identified by the reference databases. We propose that the variability in successful identifications between genome assemblies is useful for marker mining. The results suggest that various strains of P. larvae can exhibit specific traits that set them apart from the established genotypes ERIC I-V.
- 650 12
- $a proteogenomika $x metody $7 D000071696
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a včely $x mikrobiologie $7 D001516
- 650 12
- $a Paenibacillus larvae $x genetika $x patogenita $x metabolismus $7 D000070059
- 650 12
- $a faktory virulence $x genetika $x metabolismus $7 D037521
- 650 12
- $a bakteriální proteiny $x genetika $x metabolismus $7 D001426
- 650 12
- $a genom bakteriální $x genetika $7 D016680
- 650 _2
- $a databáze proteinů $7 D030562
- 650 _2
- $a proteomika $x metody $7 D040901
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Sopko, Bruno $u Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia $1 https://orcid.org/0000000255801871 $7 xx0250670
- 773 0_
- $w MED00007044 $t Proteomics $x 1615-9861 $g Roč. 24, č. 14 (2024), s. e2300280
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38742951 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20241015 $b ABA008
- 991 __
- $a 20241024111015 $b ABA008
- 999 __
- $a ok $b bmc $g 2202244 $s 1231885
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 24 $c 14 $d e2300280 $e 20240514 $i 1615-9861 $m Proteomics $n Proteomics $x MED00007044
- GRA __
- $a QK1710228 $p Národní Agentura pro Zemědělský Výzkum
- GRA __
- $a QK1910018 $p Národní Agentura pro Zemědělský Výzkum
- GRA __
- $a RO0423 $p Ministerstvo Zemědělství
- LZP __
- $a Pubmed-20241015