Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Understanding bacterial pathogen diversity: A proteogenomic analysis and use of an array of genome assemblies to identify novel virulence factors of the honey bee bacterial pathogen Paenibacillus larvae

T. Erban, B. Sopko

. 2024 ; 24 (14) : e2300280. [pub] 20240514

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24019912

Grantová podpora
QK1710228 Národní Agentura pro Zemědělský Výzkum
QK1910018 Národní Agentura pro Zemědělský Výzkum
RO0423 Ministerstvo Zemědělství

Mass spectrometry proteomics data are typically evaluated against publicly available annotated sequences, but the proteogenomics approach is a useful alternative. A single genome is commonly utilized in custom proteomic and proteogenomic data analysis. We pose the question of whether utilizing numerous different genome assemblies in a search database would be beneficial. We reanalyzed raw data from the exoprotein fraction of four reference Enterobacterial Repetitive Intergenic Consensus (ERIC) I-IV genotypes of the honey bee bacterial pathogen Paenibacillus larvae and evaluated them against three reference databases (from NCBI-protein, RefSeq, and UniProt) together with an array of protein sequences generated by six-frame direct translation of 15 genome assemblies from GenBank. The wide search yielded 453 protein hits/groups, which UpSet analysis categorized into 50 groups based on the success of protein identification by the 18 database components. Nine hits that were not identified by a unique peptide were not considered for marker selection, which discarded the only protein that was not identified by the reference databases. We propose that the variability in successful identifications between genome assemblies is useful for marker mining. The results suggest that various strains of P. larvae can exhibit specific traits that set them apart from the established genotypes ERIC I-V.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019912
003      
CZ-PrNML
005      
20241024111021.0
007      
ta
008      
241015s2024 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/pmic.202300280 $2 doi
035    __
$a (PubMed)38742951
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Erban, Tomas $u Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia $1 https://orcid.org/000000031730779X $7 mzk2005306687
245    10
$a Understanding bacterial pathogen diversity: A proteogenomic analysis and use of an array of genome assemblies to identify novel virulence factors of the honey bee bacterial pathogen Paenibacillus larvae / $c T. Erban, B. Sopko
520    9_
$a Mass spectrometry proteomics data are typically evaluated against publicly available annotated sequences, but the proteogenomics approach is a useful alternative. A single genome is commonly utilized in custom proteomic and proteogenomic data analysis. We pose the question of whether utilizing numerous different genome assemblies in a search database would be beneficial. We reanalyzed raw data from the exoprotein fraction of four reference Enterobacterial Repetitive Intergenic Consensus (ERIC) I-IV genotypes of the honey bee bacterial pathogen Paenibacillus larvae and evaluated them against three reference databases (from NCBI-protein, RefSeq, and UniProt) together with an array of protein sequences generated by six-frame direct translation of 15 genome assemblies from GenBank. The wide search yielded 453 protein hits/groups, which UpSet analysis categorized into 50 groups based on the success of protein identification by the 18 database components. Nine hits that were not identified by a unique peptide were not considered for marker selection, which discarded the only protein that was not identified by the reference databases. We propose that the variability in successful identifications between genome assemblies is useful for marker mining. The results suggest that various strains of P. larvae can exhibit specific traits that set them apart from the established genotypes ERIC I-V.
650    12
$a proteogenomika $x metody $7 D000071696
650    _2
$a zvířata $7 D000818
650    _2
$a včely $x mikrobiologie $7 D001516
650    12
$a Paenibacillus larvae $x genetika $x patogenita $x metabolismus $7 D000070059
650    12
$a faktory virulence $x genetika $x metabolismus $7 D037521
650    12
$a bakteriální proteiny $x genetika $x metabolismus $7 D001426
650    12
$a genom bakteriální $x genetika $7 D016680
650    _2
$a databáze proteinů $7 D030562
650    _2
$a proteomika $x metody $7 D040901
655    _2
$a časopisecké články $7 D016428
700    1_
$a Sopko, Bruno $u Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia $1 https://orcid.org/0000000255801871 $7 xx0250670
773    0_
$w MED00007044 $t Proteomics $x 1615-9861 $g Roč. 24, č. 14 (2024), s. e2300280
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38742951 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024111015 $b ABA008
999    __
$a ok $b bmc $g 2202244 $s 1231885
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 24 $c 14 $d e2300280 $e 20240514 $i 1615-9861 $m Proteomics $n Proteomics $x MED00007044
GRA    __
$a QK1710228 $p Národní Agentura pro Zemědělský Výzkum
GRA    __
$a QK1910018 $p Národní Agentura pro Zemědělský Výzkum
GRA    __
$a RO0423 $p Ministerstvo Zemědělství
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...