-
Something wrong with this record ?
Testing ChatGPT's Capabilities for Social Media Content Analysis
M. Haman, M. Školník
Language English Country United States
Document type Letter
NLK
ProQuest Central
from 2002-11-01 to 1 year ago
Medline Complete (EBSCOhost)
from 2003-01-01 to 1 year ago
Health & Medicine (ProQuest)
from 2002-11-01 to 1 year ago
- MeSH
- Humans MeSH
- Social Media * MeSH
- Artificial Intelligence MeSH
- Check Tag
- Humans MeSH
- Publication type
- Letter MeSH
This letter explores the potential of artificial intelligence models, specifically ChatGPT, for content analysis, namely for categorizing social media posts. The primary focus is on Twitter posts with the hashtag #plasticsurgery. Through integrating Python with the OpenAI API, the study provides a designed prompt to categorize tweet content. Looking forward, the utilization of AI in content analysis presents promising opportunities for advancing understanding of complex social phenomena.Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine Ratings, please refer to Table of Contents or online Instructions to Authors http://www.springer.com/00266 .
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24019958
- 003
- CZ-PrNML
- 005
- 20241024110826.0
- 007
- ta
- 008
- 241015s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00266-023-03607-5 $2 doi
- 035 __
- $a (PubMed)37605022
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Haman, Michael $u Department of Humanities, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czech Republic. haman@pef.czu.cz $1 https://orcid.org/0000000157722045 $7 jo20231206777
- 245 10
- $a Testing ChatGPT's Capabilities for Social Media Content Analysis / $c M. Haman, M. Školník
- 520 9_
- $a This letter explores the potential of artificial intelligence models, specifically ChatGPT, for content analysis, namely for categorizing social media posts. The primary focus is on Twitter posts with the hashtag #plasticsurgery. Through integrating Python with the OpenAI API, the study provides a designed prompt to categorize tweet content. Looking forward, the utilization of AI in content analysis presents promising opportunities for advancing understanding of complex social phenomena.Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine Ratings, please refer to Table of Contents or online Instructions to Authors http://www.springer.com/00266 .
- 650 12
- $a sociální média $7 D061108
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a umělá inteligence $7 D001185
- 655 _2
- $a dopisy $7 D016422
- 700 1_
- $a Školník, Milan $u Department of Humanities, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czech Republic $1 https://orcid.org/000000020672219X $7 jo20231206776
- 773 0_
- $w MED00005691 $t Aesthetic plastic surgery $x 1432-5241 $g Roč. 48, č. 13 (2024), s. 2602-2604
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37605022 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20241015 $b ABA008
- 991 __
- $a 20241024110820 $b ABA008
- 999 __
- $a ok $b bmc $g 2202283 $s 1231931
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 48 $c 13 $d 2602-2604 $e 20230821 $i 1432-5241 $m Aesthetic plastic surgery $n Aesthetic Plast Surg $x MED00005691
- LZP __
- $a Pubmed-20241015