• Something wrong with this record ?

Testing ChatGPT's Capabilities for Social Media Content Analysis

M. Haman, M. Školník

. 2024 ; 48 (13) : 2602-2604. [pub] 20230821

Language English Country United States

Document type Letter

E-resources Online Full text

NLK ProQuest Central from 2002-11-01 to 1 year ago
Medline Complete (EBSCOhost) from 2003-01-01 to 1 year ago
Health & Medicine (ProQuest) from 2002-11-01 to 1 year ago

This letter explores the potential of artificial intelligence models, specifically ChatGPT, for content analysis, namely for categorizing social media posts. The primary focus is on Twitter posts with the hashtag #plasticsurgery. Through integrating Python with the OpenAI API, the study provides a designed prompt to categorize tweet content. Looking forward, the utilization of AI in content analysis presents promising opportunities for advancing understanding of complex social phenomena.Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine Ratings, please refer to Table of Contents or online Instructions to Authors http://www.springer.com/00266 .

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019958
003      
CZ-PrNML
005      
20241024110826.0
007      
ta
008      
241015s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00266-023-03607-5 $2 doi
035    __
$a (PubMed)37605022
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Haman, Michael $u Department of Humanities, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czech Republic. haman@pef.czu.cz $1 https://orcid.org/0000000157722045 $7 jo20231206777
245    10
$a Testing ChatGPT's Capabilities for Social Media Content Analysis / $c M. Haman, M. Školník
520    9_
$a This letter explores the potential of artificial intelligence models, specifically ChatGPT, for content analysis, namely for categorizing social media posts. The primary focus is on Twitter posts with the hashtag #plasticsurgery. Through integrating Python with the OpenAI API, the study provides a designed prompt to categorize tweet content. Looking forward, the utilization of AI in content analysis presents promising opportunities for advancing understanding of complex social phenomena.Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine Ratings, please refer to Table of Contents or online Instructions to Authors http://www.springer.com/00266 .
650    12
$a sociální média $7 D061108
650    _2
$a lidé $7 D006801
650    _2
$a umělá inteligence $7 D001185
655    _2
$a dopisy $7 D016422
700    1_
$a Školník, Milan $u Department of Humanities, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czech Republic $1 https://orcid.org/000000020672219X $7 jo20231206776
773    0_
$w MED00005691 $t Aesthetic plastic surgery $x 1432-5241 $g Roč. 48, č. 13 (2024), s. 2602-2604
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37605022 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024110820 $b ABA008
999    __
$a ok $b bmc $g 2202283 $s 1231931
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 48 $c 13 $d 2602-2604 $e 20230821 $i 1432-5241 $m Aesthetic plastic surgery $n Aesthetic Plast Surg $x MED00005691
LZP    __
$a Pubmed-20241015

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...