-
Je něco špatně v tomto záznamu ?
Improving precision of vaccine efficacy evaluation using immune correlate data in time-to-event models
J. Dudášová, Z. Valenta, JR. Sachs
Status neindexováno Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2016
PubMed Central
od 2016
Europe PubMed Central
od 2016
ProQuest Central
od 2016-01-01
Open Access Digital Library
od 2016-07-28
Nursing & Allied Health Database (ProQuest)
od 2016-01-01
Health & Medicine (ProQuest)
od 2016-01-01
Family Health Database (ProQuest)
od 2016-01-01
Health Management Database (ProQuest)
od 2016-01-01
Public Health Database (ProQuest)
od 2016-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2016
Springer Nature OA/Free Journals
od 2016-12-01
Springer Nature - nature.com Journals - Fully Open Access
od 2016-12-01
- Publikační typ
- časopisecké články MeSH
Understanding potential differences in vaccine-induced protection between demographic subgroups is key for vaccine development. Vaccine efficacy evaluation across these subgroups in phase 2b or 3 clinical trials presents challenges due to lack of precision: such trials are typically designed to demonstrate overall efficacy rather than to differentiate its value between subgroups. This study proposes a method for estimating vaccine efficacy using immunogenicity (instead of vaccination status) as a predictor in time-to-event models. The method is applied to two datasets from immunogenicity sub-studies of vaccine phase 3 clinical trials for zoster and dengue vaccines. Results show that using immunogenicity-based estimation of efficacy in subgroups using time-to-event models is more precise than the standard estimation. Incorporating immune correlate data in time-to-event models improves precision in estimating efficacy (i.e., yields narrower confidence intervals), which can assist vaccine developers and public health authorities in making informed decisions.
1st Faculty of Medicine Charles University Prague Czechia
Institute of Computer Science of the Czech Academy of Sciences Prague Czechia
Quantitative Pharmacology and Pharmacometrics Merck and Co Inc Rahway NJ USA
Quantitative Pharmacology and Pharmacometrics MSD Prague Czechia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25002166
- 003
- CZ-PrNML
- 005
- 20250123102009.0
- 007
- ta
- 008
- 250117s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41541-024-00937-6 $2 doi
- 035 __
- $a (PubMed)39528514
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Dudášová, Julie $u Quantitative Pharmacology and Pharmacometrics, MSD, Prague, Czechia. julie.dudasova@merck.com $u First Faculty of Medicine, Charles University, Prague, Czechia. julie.dudasova@merck.com $1 https://orcid.org/000000019980767X
- 245 10
- $a Improving precision of vaccine efficacy evaluation using immune correlate data in time-to-event models / $c J. Dudášová, Z. Valenta, JR. Sachs
- 520 9_
- $a Understanding potential differences in vaccine-induced protection between demographic subgroups is key for vaccine development. Vaccine efficacy evaluation across these subgroups in phase 2b or 3 clinical trials presents challenges due to lack of precision: such trials are typically designed to demonstrate overall efficacy rather than to differentiate its value between subgroups. This study proposes a method for estimating vaccine efficacy using immunogenicity (instead of vaccination status) as a predictor in time-to-event models. The method is applied to two datasets from immunogenicity sub-studies of vaccine phase 3 clinical trials for zoster and dengue vaccines. Results show that using immunogenicity-based estimation of efficacy in subgroups using time-to-event models is more precise than the standard estimation. Incorporating immune correlate data in time-to-event models improves precision in estimating efficacy (i.e., yields narrower confidence intervals), which can assist vaccine developers and public health authorities in making informed decisions.
- 590 __
- $a NEINDEXOVÁNO
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Valenta, Zdeněk $u Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia $1 https://orcid.org/0000000171199764
- 700 1_
- $a Sachs, Jeffrey R $u Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Rahway, NJ, USA $1 https://orcid.org/000000015725558X
- 773 0_
- $w MED00205367 $t NPJ vaccines $x 2059-0105 $g Roč. 9, č. 1 (2024), s. 214
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39528514 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250117 $b ABA008
- 991 __
- $a 20250123102003 $b ABA008
- 999 __
- $a ok $b bmc $g 2254493 $s 1238169
- BAS __
- $a 3
- BAS __
- $a PreBMC-PubMed-not-MEDLINE
- BMC __
- $a 2024 $b 9 $c 1 $d 214 $e 20241111 $i 2059-0105 $m NPJ vaccines $n NPJ Vaccines $x MED00205367
- LZP __
- $a Pubmed-20250117