Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Large-scale annotation of biochemically relevant pockets and tunnels in cognate enzyme-ligand complexes

O. Vavra, J. Tyzack, F. Haddadi, J. Stourac, J. Damborsky, S. Mazurenko, JM. Thornton, D. Bednar

. 2024 ; 16 (1) : 114. [pub] 20241015

Status neindexováno Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25002358

Grantová podpora
CZ.02.1.01/0.0/0.0/16_026/0008451 Ministerstvo Školství, Mládeže a Tělovýchovy
TN02000109 Technology Agency of the Czech Republic
857560 European Commission
LX22NPO5102 European Union-Next Generation EU
20-15915Y Grantová Agentura České Republiky

Tunnels in enzymes with buried active sites are key structural features allowing the entry of substrates and the release of products, thus contributing to the catalytic efficiency. Targeting the bottlenecks of protein tunnels is also a powerful protein engineering strategy. However, the identification of functional tunnels in multiple protein structures is a non-trivial task that can only be addressed computationally. We present a pipeline integrating automated structural analysis with an in-house machine-learning predictor for the annotation of protein pockets, followed by the calculation of the energetics of ligand transport via biochemically relevant tunnels. A thorough validation using eight distinct molecular systems revealed that CaverDock analysis of ligand un/binding is on par with time-consuming molecular dynamics simulations, but much faster. The optimized and validated pipeline was applied to annotate more than 17,000 cognate enzyme-ligand complexes. Analysis of ligand un/binding energetics indicates that the top priority tunnel has the most favourable energies in 75% of cases. Moreover, energy profiles of cognate ligands revealed that a simple geometry analysis can correctly identify tunnel bottlenecks only in 50% of cases. Our study provides essential information for the interpretation of results from tunnel calculation and energy profiling in mechanistic enzymology and protein engineering. We formulated several simple rules allowing identification of biochemically relevant tunnels based on the binding pockets, tunnel geometry, and ligand transport energy profiles.Scientific contributionsThe pipeline introduced in this work allows for the detailed analysis of a large set of protein-ligand complexes, focusing on transport pathways. We are introducing a novel predictor for determining the relevance of binding pockets for tunnel calculation. For the first time in the field, we present a high-throughput energetic analysis of ligand binding and unbinding, showing that approximate methods for these simulations can identify additional mutagenesis hotspots in enzymes compared to purely geometrical methods. The predictor is included in the supplementary material and can also be accessed at https://github.com/Faranehhad/Large-Scale-Pocket-Tunnel-Annotation.git . The tunnel data calculated in this study has been made publicly available as part of the ChannelsDB 2.0 database, accessible at https://channelsdb2.biodata.ceitec.cz/ .

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25002358
003      
CZ-PrNML
005      
20250123101850.0
007      
ta
008      
250117s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s13321-024-00907-z $2 doi
035    __
$a (PubMed)39407342
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Vavra, O $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
245    10
$a Large-scale annotation of biochemically relevant pockets and tunnels in cognate enzyme-ligand complexes / $c O. Vavra, J. Tyzack, F. Haddadi, J. Stourac, J. Damborsky, S. Mazurenko, JM. Thornton, D. Bednar
520    9_
$a Tunnels in enzymes with buried active sites are key structural features allowing the entry of substrates and the release of products, thus contributing to the catalytic efficiency. Targeting the bottlenecks of protein tunnels is also a powerful protein engineering strategy. However, the identification of functional tunnels in multiple protein structures is a non-trivial task that can only be addressed computationally. We present a pipeline integrating automated structural analysis with an in-house machine-learning predictor for the annotation of protein pockets, followed by the calculation of the energetics of ligand transport via biochemically relevant tunnels. A thorough validation using eight distinct molecular systems revealed that CaverDock analysis of ligand un/binding is on par with time-consuming molecular dynamics simulations, but much faster. The optimized and validated pipeline was applied to annotate more than 17,000 cognate enzyme-ligand complexes. Analysis of ligand un/binding energetics indicates that the top priority tunnel has the most favourable energies in 75% of cases. Moreover, energy profiles of cognate ligands revealed that a simple geometry analysis can correctly identify tunnel bottlenecks only in 50% of cases. Our study provides essential information for the interpretation of results from tunnel calculation and energy profiling in mechanistic enzymology and protein engineering. We formulated several simple rules allowing identification of biochemically relevant tunnels based on the binding pockets, tunnel geometry, and ligand transport energy profiles.Scientific contributionsThe pipeline introduced in this work allows for the detailed analysis of a large set of protein-ligand complexes, focusing on transport pathways. We are introducing a novel predictor for determining the relevance of binding pockets for tunnel calculation. For the first time in the field, we present a high-throughput energetic analysis of ligand binding and unbinding, showing that approximate methods for these simulations can identify additional mutagenesis hotspots in enzymes compared to purely geometrical methods. The predictor is included in the supplementary material and can also be accessed at https://github.com/Faranehhad/Large-Scale-Pocket-Tunnel-Annotation.git . The tunnel data calculated in this study has been made publicly available as part of the ChannelsDB 2.0 database, accessible at https://channelsdb2.biodata.ceitec.cz/ .
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Tyzack, J $u European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust GenomeCampus, Cambridge, CB10 1SD, UK
700    1_
$a Haddadi, F $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
700    1_
$a Stourac, J $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
700    1_
$a Damborsky, J $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
700    1_
$a Mazurenko, S $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic. mazurenko@mail.muni.cz $u International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic. mazurenko@mail.muni.cz
700    1_
$a Thornton, J M $u European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust GenomeCampus, Cambridge, CB10 1SD, UK. thornton@ebi.ac.uk
700    1_
$a Bednar, D $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic. 222755@mail.muni.cz $u International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic. 222755@mail.muni.cz
773    0_
$w MED00181723 $t Journal of cheminformatics $x 1758-2946 $g Roč. 16, č. 1 (2024), s. 114
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39407342 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250117 $b ABA008
991    __
$a 20250123101844 $b ABA008
999    __
$a ok $b bmc $g 2254551 $s 1238361
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2024 $b 16 $c 1 $d 114 $e 20241015 $i 1758-2946 $m Journal of cheminformatics $n J Cheminform $x MED00181723
GRA    __
$a CZ.02.1.01/0.0/0.0/16_026/0008451 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a TN02000109 $p Technology Agency of the Czech Republic
GRA    __
$a 857560 $p European Commission
GRA    __
$a LX22NPO5102 $p European Union-Next Generation EU
GRA    __
$a 20-15915Y $p Grantová Agentura České Republiky
LZP    __
$a Pubmed-20250117

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...