-
Je něco špatně v tomto záznamu ?
A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals
P. Konstantinidou, Z. Loubalova, F. Ahrend, A. Friman, MV. Almeida, A. Poulet, F. Horvat, Y. Wang, W. Losert, H. Lorenzi, P. Svoboda, EA. Miska, JC. van Wolfswinkel, AD. Haase
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
Wellcome Trust - United Kingdom
R01 AG078926
NIA NIH HHS - United States
R35 GM128619
NIGMS NIH HHS - United States
ZIA DK075111
Intramural NIH HHS - United States
NLK
Cell Press Free Archives
od 2012
Directory of Open Access Journals
od 2012
Free Medical Journals
od 2012
Freely Accessible Science Journals
od 2012-01-26
Open Access Digital Library
od 2012-01-01
Open Access Digital Library
od 2012-01-26
- MeSH
- druhová specificita MeSH
- lidé MeSH
- malá interferující RNA * metabolismus genetika MeSH
- myši MeSH
- Piwi-interagující RNA MeSH
- psi MeSH
- savci * genetika MeSH
- transpozibilní elementy DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
PIWI-interacting RNAs (piRNAs) play a crucial role in safeguarding genome integrity by silencing mobile genetic elements. From flies to humans, piRNAs originate from long single-stranded precursors encoded by genomic piRNA clusters. How piRNA clusters form to adapt to genomic invaders and evolve to maintain protection remain key outstanding questions. Here, we generate a roadmap of piRNA clusters across seven species that highlights both similarities and variations. In mammals, we identify transcriptional readthrough as a mechanism to generate piRNAs from transposon insertions (piCs) downstream of genes (DoG). Together with the well-known stress-dependent DoG transcripts, our findings suggest a molecular mechanism for the formation of piRNA clusters in response to retroviral invasion. Finally, we identify a class of dynamic piRNA clusters in humans, underscoring unique features of human germ cell biology. Our results advance the understanding of conserved principles and species-specific variations in piRNA biology and provide tools for future studies.
Center for RNA Science and Medicine Yale School of Medicine New Haven CT 06511 USA
Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
Department of Molecular Cellular and Developmental Biology Yale University New Haven CT 06511 USA
Department of Physics University of Maryland College Park MD 20742 USA
Institute for Physical Science and Technology University of Maryland College Park MD 20742 USA
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Oak Ridge Institute for Science and Education US Department of Energy Oak Ridge TN USA
Wellcome CRUK Gurdon Institute University of Cambridge Tennis Court Road Cambridge CB2 1QN UK
Yale Stem Cell Center Yale School of Medicine New Haven CT 06511 USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25003830
- 003
- CZ-PrNML
- 005
- 20250206104727.0
- 007
- ta
- 008
- 250121s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.celrep.2024.114777 $2 doi
- 035 __
- $a (PubMed)39302833
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Konstantinidou, Parthena $u National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- 245 12
- $a A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals / $c P. Konstantinidou, Z. Loubalova, F. Ahrend, A. Friman, MV. Almeida, A. Poulet, F. Horvat, Y. Wang, W. Losert, H. Lorenzi, P. Svoboda, EA. Miska, JC. van Wolfswinkel, AD. Haase
- 520 9_
- $a PIWI-interacting RNAs (piRNAs) play a crucial role in safeguarding genome integrity by silencing mobile genetic elements. From flies to humans, piRNAs originate from long single-stranded precursors encoded by genomic piRNA clusters. How piRNA clusters form to adapt to genomic invaders and evolve to maintain protection remain key outstanding questions. Here, we generate a roadmap of piRNA clusters across seven species that highlights both similarities and variations. In mammals, we identify transcriptional readthrough as a mechanism to generate piRNAs from transposon insertions (piCs) downstream of genes (DoG). Together with the well-known stress-dependent DoG transcripts, our findings suggest a molecular mechanism for the formation of piRNA clusters in response to retroviral invasion. Finally, we identify a class of dynamic piRNA clusters in humans, underscoring unique features of human germ cell biology. Our results advance the understanding of conserved principles and species-specific variations in piRNA biology and provide tools for future studies.
- 650 12
- $a malá interferující RNA $x metabolismus $x genetika $7 D034741
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a savci $x genetika $7 D008322
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a druhová specificita $7 D013045
- 650 _2
- $a transpozibilní elementy DNA $x genetika $7 D004251
- 650 _2
- $a psi $7 D004285
- 650 _2
- $a Piwi-interagující RNA $7 D000094322
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a srovnávací studie $7 D003160
- 700 1_
- $a Loubalova, Zuzana $u National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- 700 1_
- $a Ahrend, Franziska $u National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN, USA
- 700 1_
- $a Friman, Aleksandr $u National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Biophysics Graduate Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
- 700 1_
- $a Almeida, Miguel Vasconcelos $u Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- 700 1_
- $a Poulet, Axel $u Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA; Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06511, USA
- 700 1_
- $a Horvat, Filip $u Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- 700 1_
- $a Wang, Yuejun $u National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN, USA; TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- 700 1_
- $a Losert, Wolfgang $u Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
- 700 1_
- $a Lorenzi, Hernan $u National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- 700 1_
- $a Svoboda, Petr $u Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Miska, Eric A $u Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- 700 1_
- $a van Wolfswinkel, Josien C $u Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA; Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06511, USA
- 700 1_
- $a Haase, Astrid D $u National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA. Electronic address: astrid.haase@nih.gov
- 773 0_
- $w MED00188029 $t Cell reports $x 2211-1247 $g Roč. 43, č. 10 (2024), s. 114777
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39302833 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206104723 $b ABA008
- 999 __
- $a ok $b bmc $g 2263535 $s 1239837
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 43 $c 10 $d 114777 $e 20240919 $i 2211-1247 $m Cell reports $n Cell Rep $x MED00188029
- GRA __
- $p Wellcome Trust $2 United Kingdom
- GRA __
- $a R01 AG078926 $p NIA NIH HHS $2 United States
- GRA __
- $a R35 GM128619 $p NIGMS NIH HHS $2 United States
- GRA __
- $a ZIA DK075111 $p Intramural NIH HHS $2 United States
- LZP __
- $a Pubmed-20250121