• Je něco špatně v tomto záznamu ?

Development of a stereo-EEG based seizure matching system for clinical decision making in epilepsy surgery

J. Thomas, C. Abdallah, K. Jaber, M. Khweileh, O. Aron, I. Doležalová, V. Gnatkovsky, D. Mansilla, P. Nevalainen, R. Pana, S. Schuele, J. Singh, A. Suller-Marti, A. Urban, J. Hall, F. Dubeau, L. Maillard, P. Kahane, J. Gotman, B. Frauscher

. 2024 ; 21 (5) : . [pub] 20241004

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc25003941

Grantová podpora
CIHR - Canada

Objective.The proportion of patients becoming seizure-free after epilepsy surgery has stagnated. Large multi-center stereo-electroencephalography (SEEG) datasets can allow comparing new patients to past similar cases and making clinical decisions with the knowledge of how cases were treated in the past. However, the complexity of these evaluations makes the manual search for similar patients impractical. We aim to develop an automated system that electrographically and anatomically matches seizures to those in a database. Additionally, since features that define seizure similarity are unknown, we evaluate the agreement and features among experts in classifying similarity.Approach.We utilized 320 SEEG seizures from 95 consecutive patients who underwent epilepsy surgery. Eight international experts evaluated seizure-pair similarity using a four-level similarity score. As our primary outcome, we developed and validated an automated seizure matching system by employing patient data marked by independent experts. Secondary outcomes included the inter-rater agreement (IRA) and features for classifying seizure similarity.Main results.The seizure matching system achieved a median area-under-the-curve of 0.76 (interquartile range, 0.1), indicating its feasibility. Six distinct seizure similarity features were identified and proved effective: onset region, onset pattern, propagation region, duration, extent of spread, and propagation speed. Among these features, the onset region showed the strongest correlation with expert scores (Spearman's rho = 0.75,p< 0.001). Additionally, the moderate IRA confirmed the practicality of our approach with an agreement of 73.9% (7%), and Gwet's kappa of 0.45 (0.16). Further, the interoperability of the system was validated on seizures from five centers.Significance.We demonstrated the feasibility and validity of a SEEG seizure matching system across patients, effectively mirroring the expertise of epileptologists. This novel system can identify patients with seizures similar to that of a patient being evaluated, thus optimizing the treatment plan by considering the results of treating similar patients in the past, potentially improving surgery outcome.

Brno Epilepsy Center 1st Department of Neurology St Anne's University Hospital Faculty of Medicine Masaryk University Brno Czech Republic

Department of Biomedical Engineering Duke Pratt School of Engineering Durham NC United States of America

Department of Clinical Neurological Sciences Schulich School of Medicine and Dentistry Western University London Canada

Department of Epileptology University Hospital Bonn Bonn Germany

Department of Neurology Duke University Medical Center Durham NC United States of America

Department of Neurology Northwestern University Chicago IL United States of America

Department of Neurology The Ohio State University Wexner Medical Center Columbus OH United States of America

Department of Neurology University Hospital of Nancy Lorraine University F 54000 Nancy France

Department of Pediatrics Schulich School of Medicine and Dentistry Western University London Canada

Epilepsia Helsinki Full member of ERN EpiCare Department of Clinical Neurophysiology HUS Diagnostic Center University of Helsinki and Helsinki University Hospital Helsinki Finland

Grenoble Alpes University Hospital Center Grenoble Alpes University Inserm U1216 Grenoble Institute Neurosciences Grenoble France

Montreal Neurological Institute and Hospital McGill University Montréal Québec H3A 2B4 Canada

Research Center for Automatic Control of Nancy Lorraine University CNRS UMR 7039 Vandoeuvre France

University of Pittsburgh Comprehensive Epilepsy Center Pittsburgh United States of America

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003941
003      
CZ-PrNML
005      
20250206104815.0
007      
ta
008      
250121s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1741-2552/ad7323 $2 doi
035    __
$a (PubMed)39178901
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Thomas, John $u Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada $u Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, United States of America $1 https://orcid.org/0000000301443746
245    10
$a Development of a stereo-EEG based seizure matching system for clinical decision making in epilepsy surgery / $c J. Thomas, C. Abdallah, K. Jaber, M. Khweileh, O. Aron, I. Doležalová, V. Gnatkovsky, D. Mansilla, P. Nevalainen, R. Pana, S. Schuele, J. Singh, A. Suller-Marti, A. Urban, J. Hall, F. Dubeau, L. Maillard, P. Kahane, J. Gotman, B. Frauscher
520    9_
$a Objective.The proportion of patients becoming seizure-free after epilepsy surgery has stagnated. Large multi-center stereo-electroencephalography (SEEG) datasets can allow comparing new patients to past similar cases and making clinical decisions with the knowledge of how cases were treated in the past. However, the complexity of these evaluations makes the manual search for similar patients impractical. We aim to develop an automated system that electrographically and anatomically matches seizures to those in a database. Additionally, since features that define seizure similarity are unknown, we evaluate the agreement and features among experts in classifying similarity.Approach.We utilized 320 SEEG seizures from 95 consecutive patients who underwent epilepsy surgery. Eight international experts evaluated seizure-pair similarity using a four-level similarity score. As our primary outcome, we developed and validated an automated seizure matching system by employing patient data marked by independent experts. Secondary outcomes included the inter-rater agreement (IRA) and features for classifying seizure similarity.Main results.The seizure matching system achieved a median area-under-the-curve of 0.76 (interquartile range, 0.1), indicating its feasibility. Six distinct seizure similarity features were identified and proved effective: onset region, onset pattern, propagation region, duration, extent of spread, and propagation speed. Among these features, the onset region showed the strongest correlation with expert scores (Spearman's rho = 0.75,p< 0.001). Additionally, the moderate IRA confirmed the practicality of our approach with an agreement of 73.9% (7%), and Gwet's kappa of 0.45 (0.16). Further, the interoperability of the system was validated on seizures from five centers.Significance.We demonstrated the feasibility and validity of a SEEG seizure matching system across patients, effectively mirroring the expertise of epileptologists. This novel system can identify patients with seizures similar to that of a patient being evaluated, thus optimizing the treatment plan by considering the results of treating similar patients in the past, potentially improving surgery outcome.
650    _2
$a lidé $7 D006801
650    12
$a elektroencefalografie $x metody $7 D004569
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a ženské pohlaví $7 D005260
650    12
$a epilepsie $x chirurgie $x diagnóza $x patofyziologie $7 D004827
650    _2
$a dospělí $7 D000328
650    12
$a klinické rozhodování $x metody $7 D000066491
650    _2
$a mladý dospělý $7 D055815
650    _2
$a mladiství $7 D000293
650    _2
$a záchvaty $x diagnóza $x chirurgie $x patofyziologie $7 D012640
650    _2
$a dítě $7 D002648
650    _2
$a stereotaktické techniky $7 D013238
650    _2
$a lidé středního věku $7 D008875
650    _2
$a reprodukovatelnost výsledků $7 D015203
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Abdallah, Chifaou $u Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
700    1_
$a Jaber, Kassem $u Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada $u Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, United States of America
700    1_
$a Khweileh, Mays $u Department of Neurology, Duke University Medical Center, Durham, NC, United States of America
700    1_
$a Aron, Olivier $u Department of Neurology, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France $u Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France
700    1_
$a Doležalová, Irena $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Gnatkovsky, Vadym $u Department of Epileptology, University Hospital Bonn, Bonn, Germany
700    1_
$a Mansilla, Daniel $u Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
700    1_
$a Nevalainen, Päivi $u Epilepsia Helsinki, Full member of ERN EpiCare, Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
700    1_
$a Pana, Raluca $u Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
700    1_
$a Schuele, Stephan $u Department of Neurology, Northwestern University, Chicago, IL, United States of America
700    1_
$a Singh, Jaysingh $u Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
700    1_
$a Suller-Marti, Ana $u Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada $u Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
700    1_
$a Urban, Alexandra $u University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, United States of America
700    1_
$a Hall, Jeffery $u Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
700    1_
$a Dubeau, François $u Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
700    1_
$a Maillard, Louis $u Department of Neurology, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France $u Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France
700    1_
$a Kahane, Philippe $u Grenoble Alpes University Hospital Center, Grenoble Alpes University, Inserm, U1216, Grenoble Institute Neurosciences, Grenoble, France
700    1_
$a Gotman, Jean $u Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
700    1_
$a Frauscher, Birgit $u Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada $u Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, United States of America $u Department of Neurology, Duke University Medical Center, Durham, NC, United States of America $1 https://orcid.org/0000000160641529
773    0_
$w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 21, č. 5 (2024)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39178901 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104810 $b ABA008
999    __
$a ok $b bmc $g 2263593 $s 1239948
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 21 $c 5 $e 20241004 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
GRA    __
$p CIHR $2 Canada
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...