Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Cerebellocerebral connectivity predicts body mass index: a new open-source Python-based framework for connectome-based predictive modeling

T. Bachmann, K. Mueller, SNA. Kusnezow, ML. Schroeter, P. Piaggi, CM. Weise

. 2025 ; 14 (-) : . [pub] 20250106

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010325

Grantová podpora
NIH

BACKGROUND: The cerebellum is one of the major central nervous structures consistently altered in obesity. Its role in higher cognitive function, parts of which are affected by obesity, is mediated through projections to and from the cerebral cortex. We therefore investigated the relationship between body mass index (BMI) and cerebellocerebral connectivity. METHODS: We utilized the Human Connectome Project's Young Adults dataset, including functional magnetic resonance imaging (fMRI) and behavioral data, to perform connectome-based predictive modeling (CPM) restricted to cerebellocerebral connectivity of resting-state fMRI and task-based fMRI. We developed a Python-based open-source framework to perform CPM, a data-driven technique with built-in cross-validation to establish brain-behavior relationships. Significance was assessed with permutation analysis. RESULTS: We found that (i) cerebellocerebral connectivity predicted BMI, (ii) task-general cerebellocerebral connectivity predicted BMI more reliably than resting-state fMRI and individual task-based fMRI separately, (iii) predictive networks derived this way overlapped with established functional brain networks (namely, frontoparietal networks, the somatomotor network, the salience network, and the default mode network), and (iv) we found there was an inverse overlap between networks predictive of BMI and networks predictive of cognitive measures adversely affected by overweight/obesity. CONCLUSIONS: Our results suggest obesity-specific alterations in cerebellocerebral connectivity, specifically with regard to task execution. With brain areas and brain networks relevant to task performance implicated, these alterations seem to reflect a neurobiological substrate for task performance adversely affected by obesity.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010325
003      
CZ-PrNML
005      
20250429135354.0
007      
ta
008      
250415e20250106xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1093/gigascience/giaf010 $2 doi
035    __
$a (PubMed)40072905
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Bachmann, Tobias $u Department of Neurology, University of Leipzig Medical Center, Leipzig 04103, Germany $1 https://orcid.org/0000000317966015
245    10
$a Cerebellocerebral connectivity predicts body mass index: a new open-source Python-based framework for connectome-based predictive modeling / $c T. Bachmann, K. Mueller, SNA. Kusnezow, ML. Schroeter, P. Piaggi, CM. Weise
520    9_
$a BACKGROUND: The cerebellum is one of the major central nervous structures consistently altered in obesity. Its role in higher cognitive function, parts of which are affected by obesity, is mediated through projections to and from the cerebral cortex. We therefore investigated the relationship between body mass index (BMI) and cerebellocerebral connectivity. METHODS: We utilized the Human Connectome Project's Young Adults dataset, including functional magnetic resonance imaging (fMRI) and behavioral data, to perform connectome-based predictive modeling (CPM) restricted to cerebellocerebral connectivity of resting-state fMRI and task-based fMRI. We developed a Python-based open-source framework to perform CPM, a data-driven technique with built-in cross-validation to establish brain-behavior relationships. Significance was assessed with permutation analysis. RESULTS: We found that (i) cerebellocerebral connectivity predicted BMI, (ii) task-general cerebellocerebral connectivity predicted BMI more reliably than resting-state fMRI and individual task-based fMRI separately, (iii) predictive networks derived this way overlapped with established functional brain networks (namely, frontoparietal networks, the somatomotor network, the salience network, and the default mode network), and (iv) we found there was an inverse overlap between networks predictive of BMI and networks predictive of cognitive measures adversely affected by overweight/obesity. CONCLUSIONS: Our results suggest obesity-specific alterations in cerebellocerebral connectivity, specifically with regard to task execution. With brain areas and brain networks relevant to task performance implicated, these alterations seem to reflect a neurobiological substrate for task performance adversely affected by obesity.
650    _2
$a lidé $7 D006801
650    12
$a konektom $x metody $7 D063132
650    12
$a index tělesné hmotnosti $7 D015992
650    12
$a magnetická rezonanční tomografie $x metody $7 D008279
650    12
$a mozeček $x diagnostické zobrazování $x fyziologie $7 D002531
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a dospělí $7 D000328
650    _2
$a obezita $x diagnostické zobrazování $7 D009765
650    _2
$a mladý dospělý $7 D055815
650    _2
$a nervová síť $x diagnostické zobrazování $x fyziologie $7 D009415
655    _2
$a časopisecké články $7 D016428
700    1_
$a Mueller, Karsten $u Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany $u Department of Neurology, First Faculty of Medicine and General University Hospital in Prague, Prague 12108, Czech Republic $1 https://orcid.org/0000000196130552
700    1_
$a Kusnezow, Simon N A $u Department of Neurology, University of Halle Medical Center, Halle 06102, Germany
700    1_
$a Schroeter, Matthias L $u Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany $1 https://orcid.org/0000000179771083
700    1_
$a Piaggi, Paolo $u Department of Information Engineering, University of Pisa, Pisa 56122, Italy $1 https://orcid.org/0000000327749161
700    1_
$a Weise, Christopher M $u Department of Neurology, University of Halle Medical Center, Halle 06102, Germany
773    0_
$w MED00186214 $t GigaScience $x 2047-217X $g Roč. 14 (20250106)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40072905 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429135350 $b ABA008
999    __
$a ok $b bmc $g 2311591 $s 1247406
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 14 $c - $e 20250106 $i 2047-217X $m GigaScience $n Gigascience $x MED00186214
GRA    __
$p NIH
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...