-
Je něco špatně v tomto záznamu ?
Towards prediction of pseudo-normal SPECT image data using variational autoencoder
K. Dudasova, J. Trnka
Jazyk angličtina Země Polsko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 1999
Free Medical Journals
od 1999
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 1999-01-01
Medline Complete (EBSCOhost)
od 2005-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1998
PubMed
40103394
DOI
10.5603/nmr.101316
Knihovny.cz E-zdroje
- MeSH
- jednofotonová emisní výpočetní tomografie * MeSH
- lidé MeSH
- mozek * diagnostické zobrazování MeSH
- počítačové zpracování obrazu * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: This study aims to evaluate the feasibility of generating pseudo-normal single photon emission computed tomography (SPECT) data from potentially abnormal images. These pseudo-normal images are primarily intended for use in an on-the-fly data harmonization technique. MATERIAL AND METHODS: The methodology was tested on brain SPECT with [123I]Ioflupane. The proposed model for generating a pseudo-normal image was based on a variational autoencoder (VAE) designed to process 2D sinograms of the brain [123I]-FP-CIT SPECT, potentially exhibiting abnormal uptake. The model aimed to predict SPECT sinograms with corresponding normal uptake. Training, validation, and testing datasets were created by SPECT simulator from 45 brain masks segmented from real patient's magnetic resonance (MR) scans, using various uptake levels. The training and validation datasets each comprised 612 and 360 samples, respectively, drawn from 36 brain masks. The testing dataset contained 153 samples based on 9 brain masks. VAE performance was evaluated through brain dimensions, Dice similarity coefficient (DSC) and specific binding ratio. RESULTS: Mean DSC was 80% for left basal ganglia and 84% for right basal ganglia. The proposed VAE demonstrated excellent consistency in predicting basal ganglia shape, with a coefficient of variation of DSC being less than 1.1%. CONCLUSIONS: The study demonstrates that VAE can effectively estimate an individualized pseudo-normal distribution of the radiotracer [123I]-FP-CIT SPECT from abnormal SPECT images. The main limitations of this preliminary research are the limited availability of real brain MR data, used as input for the SPECT data simulator, and the simplified simulation setup employed to create the synthetic dataset.
Department of Medical Physics General University Hospital Prague Prague Czech Republic
National Radiation Protection Institute Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25010361
- 003
- CZ-PrNML
- 005
- 20250429135122.0
- 007
- ta
- 008
- 250415s2025 pl f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.5603/nmr.101316 $2 doi
- 035 __
- $a (PubMed)40103394
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a pl
- 100 1_
- $a Dudasova, Katerina $u Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic. katerina.dudasova7@gmail.com $u National Radiation Protection Institute, Prague, Czech Republic. katerina.dudasova7@gmail.com $1 https://orcid.org/0009000982667442
- 245 10
- $a Towards prediction of pseudo-normal SPECT image data using variational autoencoder / $c K. Dudasova, J. Trnka
- 520 9_
- $a BACKGROUND: This study aims to evaluate the feasibility of generating pseudo-normal single photon emission computed tomography (SPECT) data from potentially abnormal images. These pseudo-normal images are primarily intended for use in an on-the-fly data harmonization technique. MATERIAL AND METHODS: The methodology was tested on brain SPECT with [123I]Ioflupane. The proposed model for generating a pseudo-normal image was based on a variational autoencoder (VAE) designed to process 2D sinograms of the brain [123I]-FP-CIT SPECT, potentially exhibiting abnormal uptake. The model aimed to predict SPECT sinograms with corresponding normal uptake. Training, validation, and testing datasets were created by SPECT simulator from 45 brain masks segmented from real patient's magnetic resonance (MR) scans, using various uptake levels. The training and validation datasets each comprised 612 and 360 samples, respectively, drawn from 36 brain masks. The testing dataset contained 153 samples based on 9 brain masks. VAE performance was evaluated through brain dimensions, Dice similarity coefficient (DSC) and specific binding ratio. RESULTS: Mean DSC was 80% for left basal ganglia and 84% for right basal ganglia. The proposed VAE demonstrated excellent consistency in predicting basal ganglia shape, with a coefficient of variation of DSC being less than 1.1%. CONCLUSIONS: The study demonstrates that VAE can effectively estimate an individualized pseudo-normal distribution of the radiotracer [123I]-FP-CIT SPECT from abnormal SPECT images. The main limitations of this preliminary research are the limited availability of real brain MR data, used as input for the SPECT data simulator, and the simplified simulation setup employed to create the synthetic dataset.
- 650 12
- $a jednofotonová emisní výpočetní tomografie $7 D015899
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a mozek $x diagnostické zobrazování $7 D001921
- 650 12
- $a počítačové zpracování obrazu $7 D007091
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Trnka, Jiri $u Department of Medical Physics, General University Hospital in Prague, Prague, Czech Republic $1 https://orcid.org/0000000181759403 $7 xx0237908
- 773 0_
- $w MED00156551 $t Nuclear Medicine Review $x 1644-4345 $g Roč. 28, č. 0 (2025), s. 9-17
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40103394 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429135117 $b ABA008
- 999 __
- $a ok $b bmc $g 2311611 $s 1247442
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 28 $c 0 $d 9-17 $e - $i 1644-4345 $m Nuclear Medicine Review $n Nucl Med Rev Cent East Eur $x MED00156551
- LZP __
- $a Pubmed-20250415